China Standard 18kw 18.5kw 22kw 100kw 130kw 132kw 160kw 200kw 380V Three Phase AC Electric Motor for Pumps vacuum pump

Product Description

 

Product Description

 

18kw 18.5kw 22kw 100kw 130kw 132kw 160kw 200kw 380v 3 phase ac electric motor for pumps

We can supply Inverter,Servo Motor,PLC And HMI at good price, please feel free to contact us!
THREE PHASE ELECTRIC MOTOR
three-phase electromotor , This motor has a very compact structure and attractive appearance. The sizes and mounting
dimensions are produced according to the IEC standard. The motor has some good features, such as high efficiency, energy-saving,high starting torque and easy maintenance.they are mainly applied for machinery and equipment.such as agriculture machinery, food machinery and air compressor.

We can also supply aluminum housing type for frame size 56-160.
We can supply cast rion housing type for frame size from 80-400.

Specifications:
1) Frame size:160
2) Rated power: 18.5KW
3) Rated voltage: 220/380/660/720V
4) Frequency: 50Hz, 60Hz
5) Protection class: IP55
6) Insulation class: F
7) Materials: cast iron
8) EFF: EFF3, EFF2, EFF1
9) Poles: 2
10) Cooling method: IC411 (total-enclosed fan-cooled type)
11) Mounting types: IMB3, IMB35, IMB5, IMB14, IMB34
12) Operating mode: S1
13) Connection: “Y” type for 3kW and downwards, “D” type for 4kW and upwards
14) Ambient temperature:-15oC <θ
15) The altitude should be lower than 1,000m above the sea level
16) Relative humidity: not higher than 90%
17) Special motors can be designed according to customers’ requirements
18) Export markets: Europe, North America, the Middle East, Africa, Southeast Asia,East
Asia, South America

 

Detailed Photos

6ED1052-1FB00-0BA8 Original CHINAMFG LOGO! 8 PLC Logo V8 230RCE Logic Module

ET200

S7-300

 

S7-400

6ES7131-6BH01-0BA0

6ES7321-1BH02-AA0

6GK7342-5DA03-0XE0

6ES7 414-5HM06-0AB0

6ES7131-6BF01-0BA0

6ES7321-1BL00-0AA0

6GK7343-1EX30-0XE0

6ES7407-0KA02-0AA0

6ES7132-6BH01-0BA0

6ES7321-1CH00-AA0

6GK7343-1EX21-0XE0

6ES7400-2JA00-0AA0

6ES7132-6GD51-0BA0

6ES7322-1BH01-AA0

6GK7343-1CX10-0XE0

6ES7960-1AA06-0XA0

6ES7132-6BH00-0AA0

6ES7322-1BL00-0AA0

6GK7343-1GX21-0XE0

6ES7960-1AA04-5AA0

6ES7132-6BD20-0BA0

6ES7322-1HF01-AA0

6GK7343-1GX31-0XE0

6ES7952-1AP00-0AA0

6ES7132-6BF01-0BA0

6ES7322-1HH01-AA0

6ES7390-1AB60-0AA0

6ES7971-0BA00

6ES7134-6GF00-0AA1

6ES7322-5HF00-AB0

6ES7390-1AE80-0AA0

6GK7443-1EX30-0XE0

6ES7134-6HB00-0CA1

6ES7323-1BH01-AA0

6ES7390-1AF30-0AA0

6ES7400-1JA01-0AA0

6ES7134-6FB00-0BA1

6ES7323-1BL00-0AA0

6ES7390-1AJ30-0AA0

6ES7412-5HK06-0AB0

6ES7134-6HD01-0BA1

6ES7331-1KF01-0AB0

6ES7307-1EA01-0AA0

6ES7960-1AB06-0XA0

6ES7135-6FB00-0BA1

6ES7331-1KF02-0AB0

6ES7307-1KA02-0AA0

6ES7414-3FM07-0AB0

6ES7135-6HD00-0BA1

6ES7331-7KB02-AB0

6ES7972-0BA42-0XA0

6ES7414-3EM07-0AB0

6ES7136-6BA00-0CA0

6ES7331-7KF02-0AB0

6ES7972-0BB42-0XA0

6ES7952-1KK00-0AA0

6ES7136-6DB00-0CA0

6ES7331-7NF00-AB0

6ES7972-0BA12-0XA0

6ES7492-1AL00-0AA0

6ES7136-6PA00-0BC0

6ES7331-7NF10-AB0

6ES7972-0BB12-0XA0

6ES7421-1EL00-0AA0

6ES7155-6BA01-0CN0

6ES7331-7PF01-0AB0

6ES7972-0BA52-0XA0

6ES7952-1KL00-0AA0

6ES7155-6AU01-0BN0

6ES7331-7PF11-0AB0

6ES7972-0BB52-0XA0

6ES7431-7KF00-6AA0

6ES7193-6AR00-0AA0

6ES7332-5HB01-AB0

6ES7392-1AJ00-0AA0

6ES7401-1DA01-0AA0

6ES7193-6BP00-0BA0

6ES7332-5HD01-AB0

6ES7392-1AM00-0AA0

6ES7416-2XP07-0AB0

6ES7193-6BP00-0DA0

6ES7332-5HF00-AB0

 

6ES7417-5HT06-0AB0

6ES7193-6BP20-0BA0

 

 

 

6ES7193-6BP20-0DA0

     

6ES7288-5AE01-0AA0 CHINAMFG SIMATIC S7-200 SMART Smart PLC Programming Controller 
 

S7-1200

 

S7-1500

6EP1332-1SH71

6ES7222-1HF32-0XB0

6ES75152AM571AB0

6ES7522-1BL10-0AA0

6ES7954-8LL03-0AA0

6ES7223-1PL32-0XB0

6ES79548LE030AA0

6ES7550-1AA01-0AB0

6ES7954-8LE03-0AA0

6ES7223-1BL32-0XB0

6GK75431AX000XE0

6ES7551-1AB00-0AB0

6ES7954-8LF03-0AA0

6ES7223-1BH32-0XB0

6GK75425DX000XE0

6ES7590-1AB60-0AA0

6ES7954-8LC03-0AA0

6AV2123-2DB03-0AX0

6ES75211BL000AB0

6ES7590-1AF30-0AA0

6ES7241-1CH32-0XB0

6AV2123-2GB03-0AX0

6ES75221BL571AB0

6ES7590-1AJ30-0AA0

6GK7277-1AA10-0AA0

6AV2123-2JB03-0AX0

6ES75317NF000AB0

6ES7592-1AM00-0XB0

6ES7231-5PD32-0XB0

6ES7241-1CH30-1XB0

6ES75921AM000XB0

6ES7953-8LP31-0AA0

6ES7231-5PF32-0XB0

6ES7212-1AE40-0XB0

6ES7512-1DK01-0AB0

6GK7543-1AX00-0XE0

6ES7231-5ND32-0XB0

6ES7212-1HE40-0XB0

6ES7505-0RA00-0AB0

6ES7512-1SK01-0AB0

6ES7231-4HD32-0XB0

6ES7214-1BG40-0XB0

6ES7590-1AF30-0AA0

6ES7515-2FM02-0AB0

6ES7231-4HF32-0XB0

6ES7214-1AG40-0XB0

6ES7511-1AK02-0AB0

6ES7521-1BL10-0AA0

6ES7232-4HA30-0XB0

6ES7214-1HG40-0XB0

6GK7542-5FX00-0XE0

6ES7531-7KF00-0AB0

6ES7232-4HD32-0XB0

6ES7215-1AG40-0XB0

6ES7522-1BL01-0AB0

6ES7532-5HD00-0AB0

6ES7234-4HE32-0XB0

6ES7215-1BG40-0XB0

6ES7507-0RA00-0AB0

6ES7531-7NF00-0AB0

6ES7221-1BH32-0XB0

6ES7215-1HG40-0XB0

6ES7521-1BL00-0AB0

6ES7531-7MH00-0AB0

6ES7221-1BF32-0XB0

6ES7217-1AG40-0XB0

6ES7510-1DJ01-0AB0

6ES7522-1BH01-0AB0

6ES7222-1BH32-0XB0

6GK7243-5DX30-0XE0

6ES7521-1BL10-0AA0

 

6ES7222-1HH32-0XB0

 

 

 

LOGO!

SINAMICS

V20

HMI

6ED1052-1MD08-0BA1

6SL3210-1KE26-0UF1

6SL3210-5BE13-7UV0

6AV21242DC571AX0

6ED1052-1FB08-0BA1

6SL3201-0BE21-0AA0

6SL3210-5BE15-5UV0

6AV21241DC571AX0

6ED1052-1HB08-0BA1

6SL3202-0AE16-1CA0

6SL3210-5BE17-5UV0

6AV21240GC571AX0

6ED1055-1FB10-0BA2

6SL3210-1KE18-8UF1

6SL3210-5BE21-1UV0

6AV21241GC571AX0

6ED1055-1NB10-0BA2

6SL3210-1KE21-3UF1

6SL3210-5BE21-5UV0

6AV21240JC571AX0

6ED1055-1MB00-0BA2

6SL3210-1KE21-7UF1

6SL3210-5BE22-2UV0

6AV21241JC571AX0

6ED1055-1FB00-0BA2

6SL3210-1KE22-6UF1

6SL3210-5BE23-0UV0

6AV21240MC571AX0

6ED1055-1HB00-0BA2

6SL3255-0AA00-4CA1

6SL3210-5BE24-0UV0

6AV21241MC571AX0

6ED1055-1MM00-0BA2

6SL3210-1KE11-8UF2

6SL3210-5BE25-5UV0

6AV21240QC571AX1

6ED1055-1MD00-0BA2

6SL3210-1PE16-1AL1

6SL3210-5BE27-5UV0

6AV21232DB030AX0

6ED1055-1MA00-0BA2

6SL3210-1PE21-8UL0

6SL3210-5BE31-1UV0

6AV21232GA030AX0

6EP3331-6SB00-0AY0

6SL3040-1MA00-0AA0

6SL3210-5BE31-5UV0

6AV21232GB030AX0

6EP3332-6SB00-0AY0

6SL3055-0AA00-5CA2

6SL3210-5BE24-0UV0

6AV21232JB030AX0

6EP3333-6SB00-0AY0

6SL3246-0BA22-1FA0

6SL3210-5BE15-5CV0

6AV21232MA030AX0

6ED1055-4MH08-0BA1

6SL3210-1PE23-3UL0

6SL3210-5BE17-5CV0

6AV21232MB030AX0

6ED1055-1CB00-0BA2

 

6SL3210-5BB21-5UV1

6AV6642-0BA01-1AX1

6ED1052-1CC08-0BA1

 

6SL3210-5BB11-2UV1

6AV6643-0BA01-1AX0

6ED1055-1CB10-0BA2

 

6SL3210-5BB13-7UV1

6AV6643-0CD01-1AX1

6ED1052-2MD08-0BA1

 

6SL3210-5BB15-5UV1

 

LOGO! 6ED1052-1FB08-0BA1 230RCE,logic module, display PS/I/O Original CHINAMFG PLC LOGO 8 Programmable Controller

Original Programmable Controllers 12/24RCE host module 6ED1052-1MD08-0BA1 PLC Logic Module Display

Company Profile

 

ZheJiang Sina Insustrial Technology Co.,Ltd offer industrial automation products with year’s experiences.

We Sell: PLC, drives, HMI, Frequency converter,Sensors and other automation equipment.
Cooperated Brands: Allen Bradley, Siemens, Omron, Schneider, Hitachi ,Sick,P+F, Gerfran, E+L and others
Our Price: All products sold are usually cheaper than the listed price and very competitive in market.

All products are genuine, factory sealed. Factory warranty & technical support is available. 
Welcome to visit our website for more information:https:// /showroom/Sina

Product Application

LOriginal Programmable Controllers 12/24RCE host module 6ED1052-1MD08-0BA1 PLC Logic Module Displayer

Hot Selling Brand

 

Customer Praise

 

Our customer speak highly of our products and services. Customer satisfaction is our pursuit for cooperation.
If you are looking for a reliable supplier for inverter,Servo Motor, PLC And HMI or any other automation equipment accessories, send us a message. Our technical support team will reply to you within 24 hours.

Packaging & Shipping

 

FAQ

Q: Are you trading comany or manufacturer?

A: We are trading company for all brand inverter,Servo Motor, PLC And HMI or any other automation equipment accessories. 
     We offer you one-stop solution for automation equipment purchasing.

Q: How about the warranty?

A: Sina provide 12 months warranty for all the goods from us , and you can refund the goods with any quality problem in 15 days.
Q: Do you have any engineers for technical support in buying?

A: Sure, we have. Our engineering team will help you for selecting PLCs, HMI, Servo Motor & Drive, VFD, low-voltage products abd softwares.
   
    If you have any needs, you can contact our technical team department directly.

Q: What products do you selling?

A: Module, Frequency converter, PLC, Motor, Switch and many accessories for automation equipment for all brand.
Q: Do you have any stock or need to buy from other suppliers?

A: We saved lots of products for selling. We have our own warehouse in HangZhou.
Q: How about other supplier have a better pice than yours.

A: “To create more benefit for clients”is our belief, if you have a better price , please let us know , we will try best to meet your price and support you.

Q: We have not cooperated before, how can we believe you ?

A: For our first order , you can pay after we prepared the goods.

Q: What about shipment?

A: We have our long-term relationship forwarder with competitive price and good services. And you can also use your own freight forwarders.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: 750-1000-1500-3000 R/Min
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2/4/6/8/10 Poles
Samples:
US$ 7500/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?

In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:

  • Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
  • Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
  • Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
  • Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
  • Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
  • Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.

AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.

In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Standard 18kw 18.5kw 22kw 100kw 130kw 132kw 160kw 200kw 380V Three Phase AC Electric Motor for Pumps   vacuum pump	China Standard 18kw 18.5kw 22kw 100kw 130kw 132kw 160kw 200kw 380V Three Phase AC Electric Motor for Pumps   vacuum pump
editor by CX 2024-05-07

Leave a Reply

Your email address will not be published. Required fields are marked *