Product Description
Product Parameters
Precision planetary reducer 90 degree servo motor reducer
PLANETX planetary reduce
Planetary reducer is widely used in industrial products due to its small size, light weight, large torque, wide speed ratio range, high rigidity, high precision, high transmission efficiency, maintenance free and other characteristics.
The planetary reducer structure is composed of a sun gear and a planet gear to form an external mesh, and a planet gear and an internal gear ring to form an internal mesh, so that the planet gear can realize revolution while realizing self rotation and maximum transmission of guarantee force; The minimum speed ratio of single-stage reduction is 3, and the maximum speed ratio is generally not more than 10. Common reduction ratios are 3, 4, 5, 6, 7, 8, and 10. The number of reducer stages is generally not more than 3, and the speed ratio is not more than 1.
Most planetary reducers are used with servo motors to reduce speed, increase torque, increase inertia, and ensure return accuracy (the higher the return accuracy, the higher the price). The maximum rated input speed of planetary reducers can reach 12000 rpm (depending on the size of the reducer itself, the larger the reducer, the smaller the rated input speed), and the operating temperature is generally between – 40 ºC and 120 ºC.
Model | Unit | PZE060A PZF060A PZK060A |
PZE085A PZF085A PZK085A |
PZE115A PZF115A PZK115A |
PZE140A PZF140A PZF160A PZK140A PZK160A |
Ratios(i) | Stages |
Rated output torque Nm |
16.5 | 63.0 | 155.0 | 310.0 | 3 | 1-stages | |
26.0 | 90.0 | 230.0 | 460.0 | 4 | |||
28.0 | 100.0 | 245.0 | 500.0 | 5 | |||
20.0 | 68.0 | 165.0 | 340.0 | 7 | |||
12.5 | 43.0 | 95.0 | 195.0 | 10 | |||
19.5 | 75.0 | 185.0 | 370.0 | 9 |
2-stages |
||
31.5 | 110.0 | 275.0 | 550.0 | 12 | |||
31.5 | 110.0 | 275.0 | 550.0 | 16 | |||
31.5 | 110.0 | 275.0 | 550.0 | 20 | |||
33.5 | 120.0 | 290.0 | 600.0 | 25 | |||
31.5 | 110.0 | 275.0 | 550.0 | 28 | |||
33.5 | 120.0 | 290.0 | 600.0 | 35 | |||
31.5 | 110.0 | 275.0 | 550.0 | 40 | |||
33.5 | 120.0 | 290.0 | 600.0 | 50 | |||
24.0 | 81.0 | 195.0 | 400.0 | 70 | |||
37.5 | 130.0 | 335.0 | 665.0 | 80 | |||
37.5 | 130.0 | 335.0 | 665.0 | 100 |
3-stages |
||
40.0 | 145.0 | 355.0 | 720.0 | 125 | |||
37.5 | 130.0 | 335.0 | 665.0 | 140 | |||
40.0 | 145.0 | 355.0 | 720.0 | 175 | |||
37.5 | 130.0 | 335.0 | 665.0 | 200 | |||
40.0 | 145.0 | 355.0 | 720.0 | 250 | |||
37.5 | 130.0 | 335.0 | 665.0 | 280 | |||
40.0 | 145.0 | 355.0 | 720.0 | 350 | |||
37.5 | 130.0 | 335.0 | 665.0 | 400 | |||
40.0 | 145.0 | 355.0 | 720.0 | 500 | |||
28.0 | 95.0 | 230.0 | 480.0 | 700 | |||
18.8 | 62.0 | 135.0 | 280.0 | 1000 | |||
Max.output torque |
Nm | 2/2*Nominal torqute | |||||
We strive for meticulousness in every process,and strive for perfection in every detail. The production management system, inspection and test system,quality control system,etc. are integrated into the production process of aif products, and
advanced technology, production and inspection equipment are widely used to truly serve customers at home and abroad with high quality and high standards!
Lifetime:20000h
Minimum operating temperature:-25ºC
Maximum operating temperature:+90ºC
Degree of protection:IP65
Lubrication method:Long term lubrication
Installation method:Any
Direction of rotation: Output, input in the same direction
Full load efficiency:1-stages 90%/2-stages 88% /3-stages 84
Q: How to get a quick quote
A: Please provide the following information when contacting us
- Motor brand
- Motor model
- Motor dimension drawing
- What is the gear ratio
Q: How long is your delivery date
A: We all install it now, but it takes 3-5 days if it is not non-standard. Non standard 10-15 days, depending on the specific situation
Q:Do you provide samples, free or extra
A: You can reserve 1 for purchase on demand
Warranty: | 1 Year |
---|---|
Classification: | Gear Parts |
Processing Type: | Metal Processing |
Match Machine: | Weaving Equipment |
Material: | Metal |
Processing Level: | Precision Finishing |
Customization: |
Available
| Customized Request |
---|
What Is a Gear Motor?
A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.
Inertial load
Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Applications
There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.
Size
The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Cost
A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Maintenance
Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.
editor by CX 2023-05-22