China Hot selling AC CHINAMFG Single Phase Electric Fan Water Pump Motor Frame 3.3″ 2p vacuum pump oil near me

Product Description

 

Permanent Split Capacitor Motor, Frame 3.3″, 2P&4P, UL certificated, reliable, low noise, over load protected, high efficiency, with various frame size and poles. Can develop motor per customer requirements.

Type Series Frame Voltage Current Power RPM
Capacitor Start (3.3″,2P) HYC82-38-2 0012 82.4mm 115V 0.65A 38W 3000RPM
Capacitor Start (3.3″,2P) HYC82-84-2 5007 82.4mm 230V  0.8A 94W  3200RPM 
Capacitor Start (3.3″,2P) HYC82-187-2 0003 82.4mm 115V 2.5A 187W 3200RPM 
Capacitor Start (3.3″,2P) HYC82-38-2 5001 82.4mm 230V 0.34A 38W 3000RPM
Capacitor Start (3.3″,2P) HYC82-63-4 0005 82.4mm 115V 1.2A 63W 3000RPM
Capacitor Start (3.3″,2P) HYC82-30-2 5005 82.4mm 230V 0.24A 30W 3300ROM
Capacitor Start (3.3″,2P) HYC82-38-2 9001 82.4mm 115/230V  0.52/0.26A 38W 3270RPM
Capacitor Start (3.3″,4P) HYC82-63-4 5006 82.4mm 230V  0.65A  63W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-25-4 5004 82.4mm 230V  0.38A 25W  1550RPM
Capacitor Start (3.3″,4P) HYC82-15-4 0003 82.4mm 115V  0.32A 15W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-94-4 0006 82.4mm 115V 2.1A 94W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-125-4 0008 82.4mm 115V 2.5A 125W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-63-4 9001 82.4mm 115/230V  1.1/0.6A 63W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-10-4 0001 82.4mm 115V  0.2A  10W  1550RPM 
Capacitor Start (3.3″,4P) HYC82-5-4  0001 82.4mm 115V 0.15A 5W 1550RPM 
Capacitor Start (3.3″,4P) HYC82-50-4  0012 82.4mm 115V 1.1A  50W 1550RPM
Capacitor Start (3.3″,4P) HYC82-25-4 0015 82.4mm 115V 0.7A 25W 1550RPM

Our company FAQ for you

(1) Q: What kind motors you can provide?
A:We mainly provide AC Motor, DC Brushed Motor, Gear Motor, Blower.,

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China Hot selling AC CHINAMFG Single Phase Electric Fan Water Pump Motor Frame 3.3China Hot selling AC CHINAMFG Single Phase Electric Fan Water Pump Motor Frame 3.3
editor by CX 2024-05-15

Leave a Reply

Your email address will not be published. Required fields are marked *