Product Description
Product Description
High-quality In-Line Series AC Asynchronous Motor Encoder By Hall Or Giant Magnetoresistance For Sightseeing Bus Forklift Work Platform Electric Vehicle Parts
Product name:HMEL15Q0171
AC asynchronous motor encoder includes dual-channel speed sensor, AC motor encoder, encoder assembly, mainly using Hall or giant
magnetoresistance element integrated circuit (bias magnetic field), through the rotating gear or magnetic steel caused magnetic field changes Detect and measure, so as to realize the function of speed measurement and direction judgment.
The housing of this type of sensor is made of special materials, which have the advantages of high strength and good temperature resistance.
The accessory accessories of the product also increase the sensing distance of the product to a certain extent, which makes the product more reliable and stable. The scope is wider.
Product Parameters
Detailed Photos
Company Profile
Product Category
Application
Our Advantages
FAQ
Q1.Can I have a sample order?
A: Yes, we welcome sample order to test and check quality.
Q2. Do you have any MOQ limit?
A: Small quantity is accepted , but we offer quantity discount.
Q3. How do you ship the goods and how long does it take to arrive?
A: We usually ship by DHL, UPS, FedEx or TNT. It usually takes 3-5 days to arrive. Airline and sea shipping also optional.
Q4. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q5. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery.
Q6. Is it OK to print my logo on the product?
A: Yes. Please inform us formally before our production and confirm the design firstly based on our sample.
Q7. How to proceed an order?
A: Firstly let us know your requirements or application.
Secondly We quote according to your requirements or our suggestions.
Thirdly customer confirms the samples and places deposit for formal order.
Fourthly We arrange the production and Shipping.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Magnetic Grid Encoder |
---|---|
Operating System: | Magnetoelectric Type |
Signal Output: | Open Collector Output |
Samples: |
US$ 60/Piece
1 Piece(Min.Order) | Order Sample Black
|
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do variable frequency drives (VFDs) impact the performance of AC motors?
Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:
- Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
- Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
- Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
- Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
- Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
- Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.
In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.
How do AC motors contribute to the functioning of household appliances?
AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:
- Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
- Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
- Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
- Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
- Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
- Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
- Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.
In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.
Can you explain the basic working principle of an AC motor?
An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:
- The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
- When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
- The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
- The induced voltage in the rotor windings creates a magnetic field in the rotor.
- The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
- The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
- The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.
This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.
editor by CX 2024-05-03
China Good quality 40s Series Encoder AC Servo Motor Fan Motor with Hot selling
Product Description
Quiet stable and reliable for long life operation
1.Diameters: 57mm
2.Lengths: 56mm;76mm;96mm
3.Continuous torques: 0.11Nm;0.22Nm;0.32Nm
4.Power: 46W;92W;134W
5.Speeds up to 4000rpm;4000rpm;4000rpm
6.Environmental conditions: -10~+40°C
7.Number of poles/phase:4/3
8.Mangnet material:Bonded NdFeB
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft and so on
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can AC motors be used in both residential and commercial settings?
Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.
In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.
In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:
- Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
- HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
- Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
- Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
- Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
- Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.
The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.
Can you explain the difference between single-phase and three-phase AC motors?
In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:
- Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
- Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
- Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
- Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
- Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
- Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.
It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.
When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.
What is an AC motor, and how does it differ from a DC motor?
An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:
AC Motor:
An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.
The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.
DC Motor:
A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.
In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.
Differences:
The main differences between AC motors and DC motors are as follows:
- Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
- Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
- Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
- Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
- Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.
In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.
editor by CX 2024-04-19
China factory Original and New Kabel Encoder CHINAMFG AC Servo Motor Hg-Kn23j-S100 vacuum pump and compressor
Product Description
Original and New Kabel Encoder CHINAMFG AC Servo Motor HG-KN23J-S100
We can supply Inverter ,Servo Motor,PLC and HMI at good price, please feel free to contact us!
Product Parameters
Product Name | Servo Motor |
Brand | Mitsubishi |
Model | HG-KN23J-S100 |
Series | HG |
Warranty | 1 Year |
Application | Industrial Ect |
Technical consulting support | Yes |
Real Picture
Company Profile
ZheJiang CHINAMFG Xing Trading Co.,Ltd is a professional supplier of Inverter,Servo Motor,PLC And HMI with 20 years production experience.
Our main products Inverter,Servo Motor,PLC And HMI are widely applied to the field of industrial automation control.
We guaranteed 100% new brand original, and we have a lot of stock with fast delivery. The technical support and after sale service
is provided and customer’s questions will be responded in the first time.
Main Products:
1. Servo system products
2. Linear motion products
3. Sensor products
4. Frequency converter, PLC,
FAQ
1.Q: How about the warranty ?
A: Aiwell provide 12 months warranty for all the goods from us , and you can refund the goods with any quality problem in 15 days.
2.Q: Other supplier have a better pice than yours.
A: “To create more benefit fir clients”is our belief, if you have a better price , please let Aiwell know , we will try best to meet your price and support you.
3.Q: We have not cooperated before , how can we believe you ?
A: For our first order , you can pay after we prepare the goods.
4.Q: What about shipment ?
A: We have DHL forwarder with competitive price , of course , cutsomers can also use their own freight forwarders.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Variable Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Closed Type |
Number of Poles: | 4 |
Customization: |
Available
|
|
---|
Can you explain the concept of motor efficiency and how it relates to AC motors?
Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.
In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.
The efficiency of an AC motor is influenced by several factors:
- Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
- Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
- Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
- Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
- Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.
Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.
Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.
In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.
What are the common signs of AC motor failure, and how can they be addressed?
AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:
- Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
- Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
- Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
- Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
- Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
- Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.
It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.
What are the key advantages of using AC motors in industrial applications?
AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:
- Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
- Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
- High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
- Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
- Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
- Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
- Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.
These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.
editor by CX 2024-04-10
in Montevideo Uruguay sales price shop near me near me shop factory supplier Shenzhen Zltech 36V 200W 0.637n. M 3000rpm Brushless AC Servo Motor with 1024 2500 Wire Encoder Forelectronic Processing and Test manufacturer best Cost Custom Cheap wholesaler
In 2008, it was awarded with “Countrywide Export Commodity Inspection-cost-free Organization”. If you are interested in any of our products or would like to discuss a potential get, make sure you really feel free of charge to get in touch with us. The team has taken part in the generating and revising of ISO/TC100 intercontinental chain normal many years in success and hosted the sixteenth ISO/TC100 Worldwide once-a-year meeting in 2004.
High velocity 3000RPM 200W 36V 60mm nema 24 servo motor with optical encoEPTfor Digital processing products
Merchandise Description
Parameter:
Item | ZLAC40ASM50 | ZLAC60ASM100 | ZLAC60ASM200 | ZLAC60ASM400 |
Dimension | Nema seventeen | Nema 24 | Nema 24 | Nema 24 |
Offer Voltage(V) | 24 | 36 | 36 | forty eight |
Rated EPT (W) | 50 | one hundred | 200 | 400 |
Rated Torque (N.m) | .16 | .318 | .637 | one.27 |
Peak Torque (N.m) | .fifty six | .955 | 1.91 | 3.eighty two |
Rated Speed (RPM) | 3000 | 3000 | 3000 | 3000 |
Moment coefficient(N.m/A) | .058 | four | seven.six | eight.four |
Rated armature current(A) | two.8 | .0866 | .0918 | .16 |
EPTack EMF coefficient(V/RPM) | three.5×10-three | three.03×10-three | five.36×10-three | nine.82×10-three |
Flange size(mm) | 42 | sixty | sixty | 60 |
Motor flange diameter(mm) | 30 | fifty | 50 | fifty |
Shaft diameter(mm) | eight | eight | 14 | 14 |
Shaft relationship | Flat key | basic shaft | Flat essential | Flat key |
Shaft Size(mm) | 22 | 27.5 | 27.5 | 27.five |
Motor Duration(mm) | 97 | a hundred and ten | 129 | 157 |
magnetic pole | ten | ten | eight | 8 |
Encoder(wire) | 1571/2500 | 1571/2500 | 1571/2500 | 1571/2500 |
Fat(kg) | .423 | .701 | 1.089 | one.475 |
Ambient temperature ( degC) | -40 | -40 | -forty | -40 |
Function:
- The stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd servo motor is a higher efficiency servo motor. The ASM series items are compatible with the installation proportions of Panasonic and Fuji Electric powered, and the encoders are available in 2500 strains or 1250 lines. The operation is extremely stable, and the heat and sounds are really reduced. It is a expense-powerful servo product.
- Rated time: constant
- Vibration degree: V15
- Set up method: flange sort
- Anti-vibration efficiency: vibration acceleration 24.5m / s (2.5G)
- Link strategy: immediate relationship
- Heat resistance score: Class F
- Path of rotation: Counterclockwise (CCW) rotation when viewed from the load aspect unEPTEPT rotation command
- Separate the tooth stator main assembly to successfully enhance EPT density and reduce iron loss
- Concentrated winding construction to successfully increase effectiveness and decrease copper reduction
- Finite component EPTlation optimizes the inner element construction of the motor, properly reducing cogging torque and additional losses
- High efficiency aluminum-iron-boron magnetic materials
- The EPT series can be outfitted with electromagnetic brakes in accordance to consumer needs.
A lot more in depth photo:
Proportions (unit: mm)
Servo Motor and Driver Package
AC servo motor:
Application
Firm Data
one. EPTrief introduction:
HangZhou EPT EPT Co., Ltd. is a large-tech EPTrprise EPTized in R ampD, manufacturing and sales of EPT EPT EPT items The firm gathered a large number of R ampD elites currently being engaged in motion handle area for a lot more than 10 years and constantly offer cost-successful motion manage goods for our associates.
two. Item ranges:
Robot Hub Servo Motor, EPT Stepper Driver, Shut Loop Stepper Driver, Lower-voltage DC Servo Driver and Stepper Motor, Multi-aXiHu (West Lake) Dis.s Movement Controller and so forth.
three. Our provider philosophy: Create worth for customers.
four. Core value: Devoted, revolutionary, virtuous, and pragmatic
5. Our vision: EPTeing the most expert brand name in the field of EPT manage, serving the EPT market
About EPT merchandise on EPT:
Make contact with:
Tel: -571-29799302 Cel: -13510984905
FAQ:
one. Factory or trader?
We are manufacturing facility, and have skilled R ampD group as released in firm data.
2. How about the shipping and delivery?
– Sample: 3-5 days.
– EPTulk purchase: 15-30 times.
3. What is your soon after-sales companies?
1. Free of charge servicing inside twelve months promise, life span advisor.
two. Skilled options in set up and maintence.
4. Why choose us?
one. Manufacturing facility Cost amp 24/seven following-sale solutions.
2. From mildew customization to content processing and welding, from good elements to finished assembly, seventy two procedures, 24 management points, stringent aging, finished item inspection.
5. Do you get the related certification?
All goods are produced in accordance to ISO9001, CE specifications.
If any phrases get your interest, please Click on EPTELOW to send a concept to us!
in Lilongwe Malawi sales price shop near me near me shop factory supplier 24SSTE2202030 NEMA24 3phase AC Servo Motor with Encoder manufacturer best Cost Custom Cheap wholesaler
It has recognized secure cooperation with many effectively acknowledged universities and institutes in china these kinds of as, Zhejiang College, Jilin College, Complex committee of countrywide chain push regular, Institute of nationwide chain travel, Zhejiang application engineering substance institute, Huhan substance safety institute and it cooperated to located China Initial Vehicle chain institute with Nationwide chain generate institute. We are looking ahead to creating productive enterprise associations with new clients close to the planet in the long term. a specialised supplier of a full assortment of chains, sprockets, gears, equipment racks, V-belts, couplings and reducers. 24SSTE NEMA24 3phase AC Servo Motor with Encoder
Product Technical specs
Motor Design | 24SSTE32257130 | 24SSTE2204030 | |
Quantity of Phase | three | 3 | |
Number of Poles | 8 | eight | |
Rated Voltage(VDC) | 220 | 220 | |
Rated Pace(Rpm) | 3000 | 3000 | |
Rated Torque | .637 | one.27 | |
Rated EPT(w) | 200 | 400 | |
Reted Current(A) | 1.five | two.8 | |
Peak Recent(A) | four.five | 8.4 | |
Peak Torue(N.m) | one.911 | 3.8 | |
Rotor Inertia(kg.cm2) | .17 | .302 | |
Torque EPT(N.M/A) | .forty two | .5 | |
Torque EPT(V/krpm | 28 | 28 | |
Line-line Resistance( Omega) | 11.6 | five.eighty three | |
Duration(mm) | one hundred ten(a hundred forty five) | one hundred thirty five(170) | |
Excess weight(kg) | 1.11 | one.33 | |
EncoEPTline variety(ppr) | one thousand or 2500 | one thousand or 2500 | |
Insulation course | F | F | |
Safety class | IP 65 | IP 65 | |
Temperature | -twenty ordmC-40 ordmC(unfrozen) | -20 ordmC-40 ordmC(unfrozen) | |
Humidity | EPTelow ninety%RH withno condensation | EPTelow 90%RH withno condensation | |
Environmental EPT | absent from corrosive, inflammable fuel,oil and dust | away from corrosive, inflammable gasoline,oil and dust |
Description
We are a guide motor manufacture in EPT. Our goods range in excess of HEPT stepper motor, EPTLDC motor, servo motors and driver systems.
one) Our items have great high quality and pretty aggressive value.
two) We can do customized-made alterations as customers’ requirements.
Software
Textile EPTry, engraving EPT
Protection, 4g antenna, solar energy
Medical tools, EPT EPT
Automobile, place of work EPT
Printing equipment, advertising and marketing equipment and so on.
Payments
1) We can settle for EXW, FOEPT
2) Payment have to be created ahead of cargo.
3) EPTort duties, taxes and costs are not incEPTd in the merchandise price or shipping and delivery fees. These costs are the buyer’s duty.
Delivery
one) We only ship to your confirmed deal with. Remember to make sure your shipping and delivery address is proper just before obtain.
2) The orders will be delivered out inside 30 operating daEPTupon payment affirmation.
three) Please check the bundle upon receipt, if there are some damages, remember to get in touch with us instantly.
Certification
IOS9001,CE,UL,EMC
If you need much more info, please speak to with us. We will connect fantastic EPTance to your any difficulties. Hope we could create a EPT-phrase successful cooperation.