Tag Archives: three phase electric motors

China manufacturer Yb3 Three Phase Flameproof Explosion Proof Electric Motor AC Induction Motors Hazardous Area Motors 0.18kw-375kw vacuum pump connector

Product Description

Product Description

Y series motors are totally enclosed and fan cooled(TFEC).Three-phase squirrel cage induction motors. They are newly designed in conformity with the relevant requirements oi IEC standards. Y series motors have outstanding performance, such as high efficiency, energy-saving, high starting torque, low noise, little vibration, reliable operation and easy maintenance, etc.Y series motors are widely used in many places, where do exist combustible, explosive or corrosive, and with any special
requirements, such as drilling machines, pumps, fans, mixer, transport machines, food machines agriculture machines and equipments etc.

Y2 Series motors are totally enclosed fan cooled(TEFC). squirrel cage three-phase induction motors,developed with new technique They are renewal and upgrading products of Y series The mounting dimension is fully conformed with IEC standard .The motors have the merits of beautiful modeling .compact structure ,low noise,high efficiency,large staring torque, easy serving, etc The motors are adopted with F class insulation and designed with assessing method for insulation
practice. It enhances greatly motor’s safety and reliability.These motors have reached an international advanced level Y2 series motors can be widely used in various machines and equipments. such as drilling machines,blowers
,pumps,compressors,transporters,agricultural and food processing machines.

Y3 series three-phase asynchronous motors, developed with new techniques. Aluminium body.Y3 series motors are defined as totally enclosed, fan cooled, squirrel cage type and noted for their novel design, beautiful
model, compact structure, low noise, high efficiency, large torque, excellent starting performance, easy serving, etc. The motors
are adopted with F class insulation and designed with assessing method for insulation system according to international practice,
it have greatly reached an international advanced level of the same kind of products at the initial days of 90s.
Y3 series motors can be widely used as driving equipments of various machineries, such as machine tools, blowers, pumps,
compressors, transporters, agricultural and food processing. Pedestal installation size and centre height and other indexes of the
motor completely measured by Y3 series three-phase asynchronous motor.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 6
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China manufacturer Yb3 Three Phase Flameproof Explosion Proof Electric Motor AC Induction Motors Hazardous Area Motors 0.18kw-375kw   vacuum pump connector	China manufacturer Yb3 Three Phase Flameproof Explosion Proof Electric Motor AC Induction Motors Hazardous Area Motors 0.18kw-375kw   vacuum pump connector
editor by CX 2024-05-16

China high quality 4kw Premium High Efficiency Three Phase AC Asynchronous Electric Motors of Ie3 Standard a/c vacuum pump

Product Description

We,GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.

We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.
 

Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.

Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.

According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.

 

Revision of the standard

A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:

For electric motors

From July 1, 2571

2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.

Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.

The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.

From July 1, 2571

For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.

Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.

The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.

For frequency inverters

From July 1, 2571

For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.

Current requirements according to the Directive

Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.

Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.

From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.

Exemptions from the current directive

  • Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
  • Made for assembly with frequency inverters (integral motors).
  • Electric motors made for use in liquid.
  • Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
  • Brake motors

Electric motors intended for operation exclusively:

  • At altitudes exceeding 4 000 CHINAMFG above sea level.
  • If ambient air temperatures exceed 60°C.
  • Where maximum operating temperature exceeds 400°C.
  • Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
  • In explosive atmospheres (as defined in Directive 94/9 / EC 9)

The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).

Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.

If the motor is to be further exported for use outside Europe, the requirements do not apply.

Some other requirements apply to water-cooled motors

We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers.    Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
 American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors

Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc

Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.

If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want.

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China high quality 4kw Premium High Efficiency Three Phase AC Asynchronous Electric Motors of Ie3 Standard   a/c vacuum pump		China high quality 4kw Premium High Efficiency Three Phase AC Asynchronous Electric Motors of Ie3 Standard   a/c vacuum pump
editor by CX 2023-12-04

China wholesaler 5000 kw electric motor selling machine asynchronous motor three phase induction motors with Hot selling

Warranty: Other
Model Number: YKS800-4
Type: Asynchronous Motor
Frequency: 50HZ
Phase: Three-phase
Protect Feature: Drip-proof
AC Voltage: 10000V
Efficiency: Requests
Certification: ce
Speed(RPM): 1500rpm
Motor Center Height: H800(mm)
Commutation: Brush
Protection Degree: IP44/IP54
Cooling Method: ICW81A
Insulation Class: F
Mounting Type: IMB3
Product Name: 5000 kw electric motor selling machine asynchronous motor
Packaging Details: Export wooden package in individual plywood box, customized as your request.
Port: ZheJiang /HangZhou/HangZhou

YKS Series HV Squirrel Cage Motor

Power:220kw – 3150KWVoltage:3KV, 6KV, 10KVSpeed: 500RPM/590RPM/740RPM/990RPM/1500RPM/3000RPMProtection Degree:IP44/IP54Cooling method: ICW81AInsulation Class: FDuty: S1Package: Export Wooden PackagePayment: 30% in advance, balance by T/T or L/C at sight
YKS8006-4, 4000KW, 10000V, 1500r/min, ICW81A, IP44/IP54, F Insulation
YKS8007-4, 4500KW, 10000V, 1500r/min, ICW81A, IP44/IP54, F Insulation
YKS8008-4, 5000KW, 10000V, 1500r/min, ICW81A, IP44/IP54, F Insulation
YKS8009-4, 5600KW, 10000V, 1500r/min, ICW81A, IP44/IP54, F Insulation

Mounting Dimensions

YKS-series (3kv, 6kv, 10kV) motor, is of squirrel-cage 3 phase asynchronous motor. The protection degree of the motor is of IP44/IP54 and the cooling method is of ICW81A. The motor has such advantage as high efficiency, energy-saving low noise, low vibration, light weight and reliable performance. They are easy for installation and maintenance.
YKS series motor is design into box type construction. The frame is light in weight and good in rigid and it is made of steel plates by melding. Air-water cooler is fixed at the top of frame with bolts and consists outside wind circuit in secondary cooling with water pump and water pool for motor, the primary cooling circulation is consisted of fan, cooler insider of motor.the primary cooling medium(air) can complete the heat exchange with secondary cooling medium in cooling pipe(circulation water) through outside surface of pipe in the cooler as well as spring, etc.
This motor is used to drive various mechanical equipment such as blowers, compressors, pumps, crushing, grinding mill, etc. It can be serve as the prime movers in coal mines, mechanical industry, power plants and various industrial enterprises.

Type of Meaning

The structure and the mounting type is of IMB3 with continuous duty(S1).The rated frequency is 50Hz and the rated voltage is 6000V,1000V,other voltage requirement or special requirements should be negotiate with manufacturer before order is placed.
YKS series motor is designed use rolling bearing with grease lubricating or sliding with diluted oil lubrication. The oil can be charged and discharged conveniently.

Order Notice
When ordering, the following requirement should be specified:
Frame size such as: YKS5006-4
Mounting type: IM B3
Rated Power: 1000KW
Protection Degree: IP44/IP54
Rated Voltage: 6KV
Cooling Method: ICW81A
Rated Frequency: 50HZ
Insulation Class: F
Synchronous Speed: 1500r/min
Ambient Condition: Altitude above sea level maximal 1,000m, cooling air temperature maximal 40℃.
Note: Belt driving is not allowed on the motor of 2poles and 4poles. Belt driving applied on the motor of other poles, should be negotiated with factory.

Motor in Stock
Packaging & Delivery
Testing & Equipment
Customer Service
Visiting
Exhibition 2017
Company Information

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China wholesaler 5000 kw electric motor selling machine asynchronous motor three phase induction motors  with Hot sellingChina wholesaler 5000 kw electric motor selling machine asynchronous motor three phase induction motors  with Hot selling

in Teresina Brazil sales price shop near me near me shop factory supplier Ie2 Ie3 Ie4 IP55 F AC Electric Three Phase Induction Motors Manufacturers 0.18~375kw for Fan Pump Blower Compressor Yx3-90s-8 0.37kw 695rpm manufacturer best Cost Custom Cheap wholesaler

  in Teresina Brazil  sales   price   shop   near me   near me shop   factory   supplier Ie2 Ie3 Ie4 IP55 F AC Electric Three Phase Induction Motors Manufacturers 0.18~375kw for Fan Pump Blower Compressor Yx3-90s-8 0.37kw 695rpm manufacturer   best   Cost   Custom   Cheap   wholesaler

With EPG brand registered in a lot more than 70 international locations like The us , Europe , Japan and so on, it has associates among globe top enterprises, this kind of as JOHNDEERE, NEW HOLLAND, CLAAS, HONDA, KUBOTA, YANMAR, etc. We have exported our items to Korea, Turkey, Bulgaria, Romania, Russia, Italy, Norway, the United states, Canada, and many others. Our solution assortment contains all types of helical equipment, spur gear, bevel gear, gear rack, worm equipment, sprockets,chains, bearings.

IE2 IE3 IE4 IP55 F AC Electric 3 Phase Induction Motors Makers .18~375KW for fan pump blower compressor
———————————————————————————————

Purposes: Can be used in the EPTs exactly where steady obligation is essential, common applications like

  • Pumps
  • Enthusiasts
  • Compressors
  • Lifting products
  • Production market

EPT Description

  • Body measurements: 63 to 355M/L
  • Rated output: .12 to 400kW
  • Voltage: 380V
  • Frequency: 50Hz or 60Hz
  • Poles: 2, 4, 6, 8,ten
  • Performance ranges: IE2
  • Obligation Cycle: S1
  • Enclosure: IC411 – TEFC
  • Insulation class: F
  • Diploma of defense: IP55/56/65/sixty six
  • Service Aspect: 1.
  • Regreasing program: Body 250 and previously mentioned

Attributes
EPTeautiful profile, large performance and vitality conserving (Level 3 of GEPT18613-2012), lower sounds, minor vibration, reliable running.

Optional Attributes
Electrical:
Insulation Class:H
Thermal Defense:body up to 132(incEPT), with
PTC Thermistor, Thermostat or PT100
Mechanical:
Other people mountings
Defense Degree:IP56, IP65, IP66
Sealing:Lip seal, Oil seal
Place Heater, Double shaft ends
Drain Hole

Mounting Type
Typical mounting type and ideal body dimensions are presented in pursuing table(with quot radic quot)

Body simple type derived variety
EPT3 EPT5 EPT35 V1 V3 V5 V6 EPT6 EPT7 EPT8 V15 V36 EPT14 EPT34 V18
sixty three~112 radic radic radic radic radic radic radic radic radic radic radic radic radic radic radic
132~one hundred sixty radic radic radic radic radic radic radic radic radic radic radic radic
a hundred and eighty~280 radic radic radic radic
315~355 radic radic radic

If there is no other request in the orEPTor settlement, terminal box stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd placement is at the rigEPT aspect of the body knowledge earlier mentioned may possibly be altered with no prior discover

Internet site

Display Place


Certificates

High quality Provider

EPT Manage

EPT Motor Generation Workshop and Stream Chart

Certificates and far more Firm data remember to go to quotAEPTOUT US quot
—————————————————————————————————————————
Welcome to make contact with us directly…

https://youtu.be/frVvg3yQqNM

WANNAN MOTOR EPT Answers

  in Teresina Brazil  sales   price   shop   near me   near me shop   factory   supplier Ie2 Ie3 Ie4 IP55 F AC Electric Three Phase Induction Motors Manufacturers 0.18~375kw for Fan Pump Blower Compressor Yx3-90s-8 0.37kw 695rpm manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Teresina Brazil  sales   price   shop   near me   near me shop   factory   supplier Ie2 Ie3 Ie4 IP55 F AC Electric Three Phase Induction Motors Manufacturers 0.18~375kw for Fan Pump Blower Compressor Yx3-90s-8 0.37kw 695rpm manufacturer   best   Cost   Custom   Cheap   wholesaler

in Kayseri Turkey sales price shop near me near me shop factory supplier High Efficiency Energy-Saving Three Phase Asynchronous Induction Electric Electrical Motor Explosion-Proof AC Motors for Industrial Use with CE Certificate manufacturer best Cost Custom Cheap wholesaler

  in Kayseri Turkey  sales   price   shop   near me   near me shop   factory   supplier High Efficiency Energy-Saving Three Phase Asynchronous Induction Electric Electrical Motor Explosion-Proof AC Motors for Industrial Use with CE Certificate manufacturer   best   Cost   Custom   Cheap   wholesaler

Furthermore, all our production procedures are in compliance with ISO9002 expectations. Service & High quality controlWe source detailed drawings and offer each time needed. A lot more importantly, we make special parts in accordance to provided drawings/samples and warmly welcome OEM inquiries. Specs:

Technological Parameters:

StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd: IEC60034
Frame Measurement: H80-H355
Rated Voltage: 380V or on ask for
Rated Frequency: 50HZ,60HZ
Rated EPT: .18KW-355KW
Efficiency Class: IE3
Insulation Course: F,H
Temperature: EPT
Altitude: le1000m
Relative Humidity: le90%
Safety Course: IP55 IP56 IP65
Cooling Method: IC411
Ambient Temperature: -15 deg- forty degC
Responsibility: S1
Mounting: EPT3,EPT35,EPT35,V1

YEPTX3 sequence EPT a few-stage asynchronous motor has functions large performance, minimal sounds and vibration, sleek and reputable procedure, stunning physical appearance.
It is widly utilised in petroleum and chemical industy, coal and carbon market, its flameproof efficiency is in accordance with GEPT3836.one quotExplosive Environment Electrical Equipment Component quot1: EPT Specifications and quotGEPT3836.two quot Explosive Atmosophere electrical Apparatus Part two:Flameproof Variety quotd quot YEPT2 sequence is produced to flameproof kind and appropriate for explosive atmosphere fields.
It is in accordance with IEC stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd, and can be exported to the nations and locations that have out IEC stardard, as effectively as utilized to EPTed equipment.

From the item design and style to the shipping and delivery of merchandise, adhere to the ISO9001 quality certification method, strict compliance with quality methods.

Gain
one.We cooperate with client to design and style and deveXiHu (West Lake) Dis.Hu (West Lake) Dis. the new items. We could supply all necessary document.
2.We ensure rapid competitive offer to each consumer inquiry sent to us inside 24 several hours.
three.We are a Revenue group:with all technological help from engineer staff.
4.We provide one a long time guarantee right after receipt of motors.
5.We guarantee all spare areas offered in life span use.
6.We respect your feed again soon after getting the item.
7.We loge complain inside of 24 hrs.

  in Kayseri Turkey  sales   price   shop   near me   near me shop   factory   supplier High Efficiency Energy-Saving Three Phase Asynchronous Induction Electric Electrical Motor Explosion-Proof AC Motors for Industrial Use with CE Certificate manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Kayseri Turkey  sales   price   shop   near me   near me shop   factory   supplier High Efficiency Energy-Saving Three Phase Asynchronous Induction Electric Electrical Motor Explosion-Proof AC Motors for Industrial Use with CE Certificate manufacturer   best   Cost   Custom   Cheap   wholesaler