China Professional 24mm DC Planetary Gear Motor vacuum pump and compressor

Product Description


 24mm OD Planetary Gearbox,Permissible   Load     Range: 0.1N.m-1.0N.m

Motor Technical Data


Rated voltage
No- load speed
No- load current mA Rat ed speed
Rated torque
Output power
Rated current
Stall torque
Stall current A
24ZY30-1280 12 8000 80 6500 3 2.0 300 15 1.2
24ZY30-12100 12 10000 100 7700 4 3.1 420 18.5 1.6

Gear Motor Technical Data

24ZY30-1280 DC Motor

     Reduction ratio 14 19 27 51 71 100 139 189 264 369 516
   Nu mb er of gear trains 2 2 2 3 3 3 3 4 4 4 4
(L)  Length(L)mm 34.0 34.0 34.0 42.5 42.5 42.5 42.5 50.8 50.8 50.8 50.8
   No- load speed r/min 571 421 296 157 113 80 58 42 30 22 16
    Rated speed r/mn 464 342 241 127 92 65 47 34 25 18 13
    Rat ed torque Nm 0.034 0.046 0.066 0.11 0.16 0.22 0.30 0.37 0.51 0.72 1
           N.m Max. permissible load in  a  short time 1.2 1.2 1.2 2.5 2.5 2.5 2.5 3 3 3 3

24ZY30-12100 DC Motor


     Reduction ratio 14 19 27 51 71 100 139 189 263    369
   Nu mb er of gear trains 2 2 2 3 3   3 3 4 4 4
(L)  Length(L)         mm 34.0 34.0 34.0 42.5 42.5  42.5 42.5 50.8 50.8 50.8
    No- load speed r/mn 714 526 370 196 141  100 72 53 38 27
    Rated speed r/min 550 405 285 151 108   77 55 41 29 21
    Rated torque N.m 0.045 0.062 0.087 0.15 0.21   0.29 0.41 0.49 0.69 0.96
           N.m Max. permissible load in a short time 1.2 1.2 1.2 2.5 2.5 2.5 2.5 3 3 3



Dimensions (mm) Rated Voltage         (VDC) Rated Speed    
   ( r/min )
Reduction Ratio Rated Torgue          (N.m)
22 12 2200-8700 1:3.7-1:516 0.011-1.0
24 12 3600-8700 1:3.7-1:516 0.034-1.0
28 12~24 3800-5100 1:3.7-1:516 0.571-3.0
32 12~24 3800-5100 1:3.7-1:720 0.030-3.0
36 12~24 2400-4300 1:3.7-1:720 0.017-3.0
42 12~24 3400-6500 1:3.5-1:294 0.014-15.0
45 12~24 2400-3600 1:3.71-1:369 0.15-10.0
52 12~24 2400-3600 1:4.5-1:312 0.30-20.0
56 12~24 1600-4000 1:3.6-1:575 0.22-30.0
71 12~24 1600-2600 1:4-1:308 0.72-54.0
82 12~24 1700-2750 1:4-1:329 1.2-120.0
92 12~24 960-2400 1:4.3-1:422 0.9-450.0
120 12~24 1600-2800 1:4.8-1:427 3.4-600.0

The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.

Packaging & Shipping:
1, Waterproof plastic bag packed in foam box and carton as outer packing.
2, Export wooden box packaging for products.


  • Open for general discussion and questions
  • Time to market or theatre of operations can be substantially reduced
  • Talented team of engineers providing innovative technical solutions
  • One stop “supplier” and complete sub-system
  • Quality products provided at competitive low cost
  • Ability to ship world wide
  • On time delivery
  • Training at Customer locations
  • Fast service on return and repair results
  • Many repeated customers


Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited


.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Professional 24mm DC Planetary Gear Motor   vacuum pump and compressor	China Professional 24mm DC Planetary Gear Motor   vacuum pump and compressor
editor by CX 2023-10-23

Leave a Reply

Your email address will not be published. Required fields are marked *