Product Description
product/sdaAgwbUMWkZ/China-Custom-3kv-6kv-9kv-355kw-High-Power-Three-Phase-Asynchronous-Motors.html
Xihu (West Lake) Dis. Xihu (West Lake) Dis.i Motor Co.,Ltd which was founded in 1969, is national appointed as chief factory for small and medium-size motor by machinery ministry. It has 50 years history of producing electric Motor.In November 2 square meter’s workshop,8200 square meter’s technology Research building, 23 assembly lines and 2300 sets of producing Machines, and motor testing center (10000KW).The main electric motors for technical research are high-efficiency motor with energy saving, VFD motor, large-size motor and special motor. The company has 1200 staff and workers in total, there are 130 engineers who work on scientific, technical research and test development, Which build “ZheJiang technical center”, “ZheJiang Electrical Engineering Center “. The company passes ISO9001:2008, ISO14001:2004, GB/T28001.
Main products: high-efficiency motor (YE3 80-355, YE2 56-355), High-efficiency high voltage motor (YX/YXKK/YXKS series H355-800),compact high voltage motor (YX2 H355-560), VFD motor (YVF2 series H80-450),high voltage VFD motor, low voltage rotor motor (YR series H315-355),YR/YRKK high voltage rotor motor, high-efficiency explosion-proof motor (YB3 series H80-355),TDMK series large-size synchronous motor (specified for mine mill), high voltage explosion-proof motor (YB2 H355-560), Y2 series low voltage big power motor, permanent magnet synchronous motor, YE4 series super premium efficiency motor, special motor for car and other special motors for customers. YE3,JHM,YVF2, YE2 series motors pass “CCC” certificates; YE2, YE3 series high-efficiency motors get “CE” certificates; YE3 premium efficiency motor, CXYT permanent magnet synchronous motor, S18/25 get National energy-saving certificates.
In year 2016, the company achieved sales revenue RMB 1.52 billion Yuan, incoming tax RMB 60 million yuan, net profit RMB 10.171 million yuan, and top 3 comprehensive strength in field of small-medium electric motors in China
Y2 series high-voltage 3 phase asynchronous motor(H355~560 mm)
General Introductions:
Y2 series high-voltage 3 phase asynchronous electric motor is a new generation of our products. This series motors have lots of good properties such as good appearance, high reliability, small volume, light weight, low vibration, low noise and high efficiency, and so on. This series of motor power, mounting size, electricity properties meet the national GB755(rotation motor power and performance)standard and IEC standard.
The mechanical dimensions and tolerances of this series of motors conform to China national standardGB1800-1804 and the ISO standard. Enclosure protection degree according to GB4942.1 and IEC60034-5(classification of enclosure protection of electric machines )the motor of this series are IP54, other type enclosure protection also produce according customer’s requirement.
Construction Introductions:
Y2 series high voltage motors adopt the frame with cooling CHINAMFG which have high mechanical intensity and excellent rigidity. The motors have high efficiency. This series motors adopt less pastern insulation system, insulation class F, VPI technique, main insulation and conductor inter-turn insulation are able to resist higher electric impulse. Cast aluminum motors ensure the motors operate reliably. Totally-enclosed design with IP54/IP55 drgree of protection. External fan is on-way fan which has good features such as low noise, high efficiency and high air pressure, no reversion.
Work Conditions:
Rated voltage | 3KV~13.8KV |
Output power | 160KW~2000KW |
Poles | 2~16 |
Protection Class | IP54/IP55 |
Insulation Class: F/H temperature rise B | F/H temperature rise B |
Altitude | Not exceed 1000m |
Rated frequency | 50HZ |
Duty | Continuous(S1) |
Ambiemt temperature | -15°C~+40°C |
The above is The Default Parameters, If you have any other special requirements, you can contact us for Customization.
Q: Are you a factory or trading company?
A: HangZhou XIHU (WEST LAKE) DIS.I is a factory that has been focusing on motors and accessories for more than 50 years.
Q: What about the warranty?
A: We offer 12 month warranty period as the quality guarantee.
Q: Can you do OEM?
A: Yes , we offer OEM.
Q: How about your service?
A: We have pre-sale service, in-sale service and after-sale service.What we pursue is long-term cooperation,
so our principle is customer first.
Q: What are your terms of delivery?
A: Generally we ship in FOB term, but we couldoffer the solution for CNF, CIF and DDP, which all based on your
requirement.
Q: What’s the delivery time?
A: 10 to 30 days after receiving your payment in advance. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Protection Type |
Number of Poles: | 4 |
Customization: |
Available
|
|
---|
Can AC motors be used in both residential and commercial settings?
Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.
In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.
In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:
- Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
- HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
- Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
- Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
- Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
- Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.
The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.
Can AC motors be used in renewable energy systems, such as wind turbines?
Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:
1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.
2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.
3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.
4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.
5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.
6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.
It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.
In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.
What are the main components of an AC motor, and how do they contribute to its operation?
An AC motor consists of several key components that work together to facilitate its operation. These components include:
- Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
- Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
- Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
- End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
- Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
- Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
- Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.
Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.
editor by CX 2024-05-14
China manufacturer ZD Electric Induction AC Gear Reduction Motor For Conveyor Packing Machine vacuum pump brakes
Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Detailed Photos
Product Parameters
Other Related Products
Click here to find what you are looking for:
Company Profile
FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.
Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.
Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Variable Speed |
Number of Stator: | Single-Phase |
Function: | Driving |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Customization: |
Available
|
|
---|
What types of feedback mechanisms are commonly integrated into gear motors for control?
Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:
1. Encoder Feedback:
An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:
- Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
- Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.
2. Hall Effect Sensors:
Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.
3. Current Sensors:
Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.
4. Temperature Sensors:
Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.
5. Hall Effect Limit Switches:
Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.
6. Resolver Feedback:
A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.
These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.
What are some common challenges or issues associated with gear motors, and how can they be addressed?
Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:
1. Gear Wear and Failure:
Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:
- Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
- Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
- Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.
2. Backlash and Inaccuracy:
Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:
- Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
- Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
- Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.
3. Noise and Vibrations:
Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:
- Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
- Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
- Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.
4. Overheating and Thermal Management:
Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:
- Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
- Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
- Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.
5. Load Variations and Shock Loads:
Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:
- Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
- Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
- Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.
By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.
Are there specific considerations for selecting the right gear motor for a particular application?
When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:
1. Torque Requirement:
The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.
2. Speed Requirement:
Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.
3. Duty Cycle:
Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.
4. Environmental Factors:
Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.
5. Efficiency and Power Requirements:
Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.
6. Physical Constraints:
Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.
7. Noise and Vibration:
Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.
By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.
editor by CX 2024-05-06
China manufacturer AC Electric Servo Motor 90s Series for Injection Molding Machine vacuum pump ac
Product Description
Quiet stable and reliable for long life operation
1.Diameters: 57mm
2.Lengths: 56mm;76mm;96mm
3.Continuous torques: 0.11Nm;0.22Nm;0.32Nm
4.Power: 46W;92W;134W
5.Speeds up to 4000rpm;4000rpm;4000rpm
6.Environmental conditions: -10~+40°C
7.Number of poles/phase:4/3
8.Mangnet material:Bonded NdFeB
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft and so on
Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.
Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.
After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.
Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?
In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:
- Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
- Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
- Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
- Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
- Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
- Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.
AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.
In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.
What are the common signs of AC motor failure, and how can they be addressed?
AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:
- Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
- Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
- Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
- Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
- Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
- Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.
It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.
What is an AC motor, and how does it differ from a DC motor?
An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:
AC Motor:
An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.
The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.
DC Motor:
A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.
In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.
Differences:
The main differences between AC motors and DC motors are as follows:
- Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
- Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
- Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
- Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
- Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.
In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.
editor by CX 2024-05-03
China manufacturer High Quality 6W 60mm Reversible AC Gear Motor for for Packing Machine vacuum pump design
Product Description
MOTOR FRAME SIZE | 60 mm / 70mm / 80mm / 90mm / 104mm | ||
MOTOR TYPE | INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR | ||
SERIES | K series | ||
OUTPUT POWER | 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized) | ||
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized) | ||
Voltage type | Single phase 100-120V 50/60Hz 4P | Single phase 200-240V 50/60Hz 4P | |
Three phase 200-240V 50/60Hz | Three phase 380-415V 50/60Hz 4P | ||
Three phase 440-480V 60Hz 4P | Three phase 200-240/380-415/440-480V 50/60/60Hz 4P | ||
Accessories | Terminal box type / with Fan / thermal protector / electromagnetic brake | ||
Above 60 W, all assembled with fan | |||
GEARBOX FRAME SIZE | 60 mm / 70mm / 80mm / 90mm / 104mm | ||
GEAR RATIO | 3G-300G | ||
GEARBOX TYPE | PARALLEL SHAFT GEARBOX AND STRENGTH TYPE | ||
Right angle hollow worm shaft | Right angle spiral bevel hollow shaft | L type hollow shaft | |
Right angle CHINAMFG worm shaft | Right angle spiral bevel CHINAMFG shaft | L type CHINAMFG shaft | |
K2 series air tightness improved type | |||
Certification | CCC CE ISO9001 CQC |
other product
Certifications
Packaging & Shipping
Company Profile
FAQ
Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.
Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
Application: | Machine Tool |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
Can gear motors be used for precise positioning, and if so, what features enable this?
Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:
1. Gear Reduction:
One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.
2. High Resolution Encoders:
Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.
3. Closed-Loop Control:
Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.
4. Stepper Motors:
Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.
5. Servo Motors:
Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.
6. Motion Control Algorithms:
Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.
By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2023-11-30
China 86HS115-6004 High torque 8.7N.m Nema34 unipolar stepper motor for cnc machine manufacturer
Warranty: 3months-1year
Product Variety: JK86HS115-six
Fax: 519 88713769
QQ: 357119514
Skype: stay:c923eac0d74bf5a7
E mail: sales02jkongmotor.com
Q1: What about your warranty?
A: We guarantee is 1 12 months . for sea order . is 15months.
Q2: Do you have any certificates?
A: Indeed, we have. All the motors have been authorized by CE and Rohs.
Q3: Do you provide OEM AND ODM support?
A: Of course. We can provide OEM andmake custom-made design for any particular software.
This autumn: How can be your model distributor?
A: We will examine your potential and assist you market and increase the marketplace.
Q5: What is actually the delivery time ?
A: Except special get. For samples usually 10-fourteen operating times . for batch order . normally twenty-25days.
The Basics of a Gear Motor
The basic mechanism behind the gear motor is the principle of conservation of angular momentum. The smaller the gear, the more RPM it covers and the larger the gear, the more torque it produces. The ratio of angular velocity of two gears is called the gear ratio. Moreover, the same principle applies to multiple gears. This means that the direction of rotation of each adjacent gear is always the opposite of the one it is attached to.
Induction worm gear motor
If you’re looking for an electric motor that can deliver high torque, an Induction worm gear motor might be the right choice. This type of motor utilizes a worm gear attached to the motor to rotate a main gear. Because this type of motor is more efficient than other types of motors, it can be used in applications requiring massive reduction ratios, as it is able to provide more torque at a lower speed.
The worm gear motor is designed with a spiral shaft that is set into splines in another gear. The speed at which the worm gear rotates is dependent on the torque produced by the main gear. Induction worm gear motors are best suited for use in low-voltage applications such as electric cars, renewable energy systems, and industrial equipment. They come with a wide range of power-supply options, including twelve-volt, 24-volt, and 36-volt AC power supplies.
These types of motors can be used in many industrial settings, including elevators, airport equipment, food packaging facilities, and more. They also produce less noise than other types of motors, which makes them a popular choice for manufacturers with limited space. The efficiency of worm gearmotors makes them an excellent choice for applications where noise is an issue. Induction worm gear motors can be compact and extremely high-torque.
While the Induction worm gear motor is most widely used in industrial applications, there are other kinds of gearmotors available. Some types are more efficient than others, and some are more expensive than others. For your application, choosing the correct motor and gearbox combination is crucial to achieving the desired result. You’ll find that the Induction worm gear motor is an excellent choice for many applications. The benefits of an Induction worm gear motor can’t be overstated.
The DC gear motor is an excellent choice for high-end industrial applications. This type of gearmotor is smaller and lighter than a standard AC motor and can deliver up to 200 watts of torque. A gear ratio of three to two can be found in these motors, which makes them ideal for a wide range of applications. A high-quality DC gear motor is a great choice for many industrial applications, as they can be highly efficient and provide a high level of reliability.
Electric gear motors are a versatile and widely used type of electric motor. Nevertheless, there are some applications that don’t benefit from them, such as applications with high shaft speed and low torque. Applications such as fan motors, pump and scanning machines are examples of such high-speed and high-torque demands. The most important consideration when choosing a gearmotor is its efficiency. Choosing the right size will ensure the motor runs efficiently at peak efficiency and will last for years.
Parallel shaft helical gear motor
The FC series parallel shaft helical gearmotor is a compact, lightweight, and high-performance unit that utilizes a parallel shaft structure. Its compact design is complemented by high transmission efficiency and high carrying capacity. The motor’s material is 20CrMnTi alloy steel. The unit comes with either a flanged input or bolt-on feet for installation. Its low noise and compact design make it an ideal choice for a variety of applications.
The helical gears are usually arranged in two rows of one another. Each row contains one or more rows of teeth. The parallel row has the teeth in a helical pattern, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a point contact design and do not overlap. They can be either parallel or crossed. The helical gear motors can have any number of helical pairs, each with a different pitch circle diameter.
The benefits of the Parallel Shaft Helical Gearbox include high temperature and pressure handling. It is produced by skilled professionals using cutting-edge technology, and is widely recognized for its high performance. It is available in a range of technical specifications and is custom-made to suit individual requirements. These gearboxes are durable and low-noise and feature high reliability. You can expect to save up to 40% of your energy by using them.
The parallel shaft helical gear motors are designed to reduce the speed of a rotating part. The nodular cast iron housing helps make the unit robust in difficult environments, while the precision-machined gears provide quiet, vibration-free operation. These motors are available in double reduction, triple reduction, and quadruple reduction. The capacity ranges from 0.12 kW to 45 kW. You can choose from a wide variety of capacities, depending on the size of your gearing needs.
The SEW-EURODRIVE parallel shaft helical gearmotor is a convenient solution for space-constrained applications. The machine’s modular design allows for easy mounting and a wide range of ambient temperatures. They are ideal for a variety of mechanical applications, including conveyors, augers, and more. If you want a small footprint, the SEW-EURODRIVE parallel shaft helical gear motor is the best solution for you.
The parallel shaft helical gears are advantageous for both high and low speed applications. Parallel helical gears are also suitable for low speed and low duty applications. A good example of a cross-helix gear is the oil pump of an internal combustion engine. Both types of helical gears are highly reliable and offer vibration-free operation. They are more costly than conventional gear motors, but offer more durability and efficiency.
Helical gear unit
This helical gear unit is designed to operate under a variety of demanding conditions and can be used in a wide range of applications. Designed for long life and high torque density, this gear unit is available in a variety of torques and gear ratios. Its design and construction make it compatible with a wide range of critical mechanical systems. Common applications include conveyors, material handling, steel mills, and paper mills.
Designed for high-performance applications, the Heidrive helical gear unit provides superior performance and value. Its innovative design allows it to function well under a wide range of operating conditions and is highly resistant to damage. These gear motors can be easily combined with a helical gear unit. Their combined power output is 100 Nm, and they have a high efficiency of up to 90%. For more information about the helical gear motor, contact a Heidrive representative.
A helical gear unit can be classified by its reference section in the standard plane or the turning plane. Its center gap is the same as that of a spur gear, and its number of teeth is the same. In addition to this, the helical gear has a low axial thrust, which is another important characteristic. The helical gear unit is more efficient at transferring torque than a spur gear, and it is quieter, too.
These units are designed to handle large loads. Whether you are using them for conveyors, augers, or for any other application that involves high-speed motion, a helical gear unit will deliver maximum performance. A helical gear unit from Flender can handle 400,000 tasks with a high degree of reliability. Its high efficiency and high resistance to load ensures high plant availability. These gear motors are available in a variety of sizes, from single-speed to multi-speed.
PEC geared motors benefit from decades of design experience and high quality materials. They are robust, quiet, and offer excellent performance. They are available in multiple configurations and are dimensionally interchangeable with other major brands. The gear motors are manufactured as modular kits to minimize inventory. They can be fitted with additional components, such as backstops and fans. This makes it easy to customize your gear motors and save money while reducing costs.
Another type of helical gears is the double helical gear. The double helical gear unit has two helical faces with a gap between them. They are better for enclosed gear systems as they provide greater tooth overlap and smoother performance. Compared to double helical gears, they are smaller and more flexible than the Herringbone type. So, if you’re looking for a gear motor, a helical gear unit may be perfect for you.
editor by czh 2023-02-17
China Hot selling panasonic 750w Japan ac servo motor MHMD082G1U + MCDKT3520E for jacquard machine manufacturer
Warranty: 3months-1year, 1 Year
Model Number: MHMD082G1U + MCDKT3520E
Type: SERVO MOTOR
Frequency: 50/60Hz
Phase: Three-phase
Protect Feature: Drip-proof
AC Voltage: 200V
Efficiency: IE 4
Product Name: 750w Japan ac servo motor MHMD082G1U for jacquard machine
Rated speed: 3000rpm
Protection class: IP65
Rated Voltage: 200V
Rated current: 4.0A
Rated torque: 2.4Nm
Application: General Machinery
Rated Power: 750W
Weight: 5.5KG
Packaging Details: Original package!
Panasonic 750w Japan ac servo motor MHMD082G1U + MCDKT3520E for jacquard machineWe can supply A4 A5 A6 series servo motors with drive at good price ?Please send us the model you need then we will check for you ?Please feel free to contact us ?
Brand : | Panasonic |
Rated power: | 750w |
Model: | MHMD082G1U + MCDKT3520E |
Product type: | ac servo motor + ac servo drive |
How to Select a Gear Motor
A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.
Angular geared motors
Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Planetary gearboxes
Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Hydraulic gear motors
Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Croise motors
There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.
editor by czh
in Tainan China, Taiwan Province of China sales price shop near me near me shop factory supplier Wps155 Worm Reducer Shaft Gearbox for Packing Machine manufacturer best Cost Custom Cheap wholesaler
We inspect every single piece of bearing by ourselves before supply. Our solution range contains all varieties of helical equipment, spur equipment, bevel equipment, equipment rack, worm gear, sprockets,chains, bearings. We will supply very best solutions and higher quality goods with all sincerity.
gt Merchandise Introduction
Wpw Worm Worm Reductor
one, WP series worm EPTT ‘s the EPTT easy, vibration, EPT and sound are tiny, a big reduction ratio, extensive versaEPTTty, with all sorts of mechanical equipment.
2, WPA collection speed EPTT are ready to acquire a more substantial solitary-stage EPTT EPT ratio, compact, most designs have EPT EPT self-locking, braking requirements for mechanical gear can help save brakes
3, worm thread engagement with the worm EPT tooth surface area friction loss increased than the EPT EPTT performance and as a result minimal, straightforward to warmth and greater temperatures.
4, interworking good worm manufactured in accordance to countrywide stXiHu (West EPT) Dis.Hu (West EPT) Dis.rds, bearings, seals and so forth with stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd parts. five,
five, box variety basic sort (vertical or horizontal box for two buildings with bottom foot) and the EPT type (box is rectangular, multi-faceted with fastened screw, not equipped with base foot or the other stop foot and other structural variety)
six, WP series EPT box enter shaft coupling strategies are the simple type (solitary input shaft and dual enter shaft), two motor with flange.
7, WP series EPTT ‘ output, place and path of the enter shaft and the enter shaft on the up coming the output aXiHu (West EPT) Dis.s and down the enter shaft and down.
eight, WP collection worm EPTT can be two or three sets consisting of multi stage EPT EPTT to get great EPT ratio.
Variety: | WP EPTs reduction EPT |
Product: | WPA40-250 |
Ratio: | 10,fifteen,twenty,25,thirty,forty,fifty,60 |
EPTT: | Eco-friendly,Brown |
EPT: | Cast iron physique |
Worm EPT- Cooper-ten-three # | |
Worm-20CrMnTi with carburizing and quenching, area hardness is 56-62EPTC | |
Shaft-chromium steel-forty five# | |
EPTT: | Paper EPTT,Plywood box / for every established(With foam board inside of) |
Warranty: | 1 calendar year |
Enter EPTT: | .55kw,.75kw,one.1kw,one.5kw,2.2kw,4kw,5.5kw,7.5kw |
Usages: | In EPTT EPTT: Foodstuff things,EPTT,chemical, aswell as EPTT, printing, dyeing,woodworking, EPT and plastics #8230.. |
IEC Flange: | 80B5,90B5,100B5,112B5,132B5…. |
Lubricant: | Artificial amp Mineral |
gt Catalogue
gt Our EPT Benefits
one. Reasonable price tag with excellent quality
2.Every single one tests cautiously
three.Distinct nameplate
four.Trustworthy deal
5.EPT efficiency, clean runingand lower noise
six.EPTT resources make best functionality
gt Producing Procedure
gt WORKSHOP EPT:
CERTIFICATION :
gt EPTAGE :
for a single container, right loading ,for less, all goods with pallet,
FAQ
FAQ
1, Q:what is actually your MOQ for ac EPEPT ?
A: 1pc is alright for each kind electric EPT box motor
two, Q: What about your guarantee for your induction velocity EPEPT ?
A: one yr ,but other than male-manufactured wrecked
three, Q: which payment way you can accept ?
A: TT, western union .
4, Q: how about your payment way ?
A: a hundred%payment in EPTd less $5000 ,30% payment in EPTd payment , 70% payment before sending over $5000.
5, Q: how about your EPTT of pace reduction motor ?
A: plywood circumstance ,if dimension is small ,we will pack with pallet for less one particular container
six, Q: What information must be presented, if I purchase electric powered helical EPTed motor from you ?
A: rated EPTT, ratio or output pace,sort ,voltage , mounting way , quantity , if a lot more is EPT.
in Leicester United Kingdom sales price shop near me near me shop factory supplier China Kingoro Brand Wood Pellet Machine manufacturer best Cost Custom Cheap wholesaler
The team is targeted on generating all range of normal roller chains and sprockets, gears & gearboxes, this sort of as conveyor chain & sprockets , stainless metal chain, agricultural chain and has not just offered its goods all more than china, but also bought far more than 65% goods to oversees, like Europe, The us, South-east Asia, and it also has set up storage logistics in locations like Europe. We examine every piece of bearing by ourselves before shipping. Ever-Power Group CO., LTD. IS Professional IN Making ALL Varieties OF MECHANICAL TRANSMISSION AND HYDRAULIC TRANSMISSION LIKE: PLANETARY GEARBOXES, WORM REDUCERS, IN-LINE HELICAL Equipment Velocity REDUCERS, PARALLEL SHAFT HELICAL Gear REDUCERS, HELICAL BEVEL REDUCERS, HELICAL WORM Gear REDUCERS, AGRICULTURAL GEARBOXES, TRACTOR GEARBOXES, Car GEARBOXES, PTO Push SHAFTS, Unique REDUCER & Associated Equipment Components AND OTHER Associated Items, SPROCKETS, HYDRAULIC System, VACCUM PUMPS, FLUID COUPLING, Equipment RACKS, CHAINS, TIMING PULLEYS, UDL Speed VARIATORS, V PULLEYS, HYDRAULIC CYLINDER, Equipment PUMPS, SCREW AIR COMPRESSORS, SHAFT COLLARS Minimal BACKLASH WORM REDUCERS AND SO ON.
Biomass Vitality Ring Die Pellet EPTT
This pellet EPTT is very suitable for uncooked supplies these kinds of as:
one. EPT squander: tree branches, trunks, barks, sawdust, etc.
2. EPTT Residues: EPTT straw: cornstalk, wheat straw, rice straw, cotton straw, rice husk, sunflower seed husk, peanut shell, etc.
3. Other individuals waste: EFB, PKS, bagasse, Coconut, Cocoa husk
This Pelle is broadly utilised for burning as gas in:
Biomass energy EPTT, EPTT EPTT, EPT processing EPTT, EPTT EPTT, Food goods manufacturing unit, Winery EPTT and many others.
Specification of Ring Die Pellet EPTT with conventional EPTT
Product | EPTT(kw) | Capacity(t/h) |
SZLH470 | fifty five | .eight-one. |
SZLH560 | ninety | one.two-1.5 |
SZLH760 | 160 | one.five-two.5 |
SZLH850 | 220 | two.5-3.5 |
Specification of Ring Die Pellet EPTT with huge EPT EPTT
Model | EPTT(kw) | Capacity(t/h) |
SZLH580 | 90 | one.two-one.five |
SZLH660 | 132 | 1.eight-2. |
SZLH700 | 160 | 2.-two.5 |
SZLH860 | 220 | two.three-three.5 |
Supply of Biomass Pellet EPTT
Our products have been utilized in thirty international locations and areas.
Client internet sites of Biomass Pellet producing EPTT
We have efficiently mounted almost 700 total pellet creation lines
About EPT
EstabEPTTd in 1995 , with 25 several years of production encounter.
As large-tech and brand name EPTTrprise, products by means of the provincial good quality inspection,
our factory is specified suppliers for federal government initiatives.
Major merchandise:
A.Full Pellet Creation Line
wooden chipper, hammer mill, EPTer, mixer, rotary dryer, pellet EPTT, pellet cooler, EPTT EPTT.
B: Biomass Pellet Mill
one.Vertical ring die pellet EPTT 2.Flat pellet EPTT
C. Feed Pellet Mill
D. Pellet burner
Format of a full pellet produciton line
Certificates: IS0, CE, and SGS
Certification of EPT Pellet producing gear
in San Jose del Monte Philippines sales price shop near me near me shop factory supplier China Manufacture CNC Wood Router Working Machine 1325 manufacturer best Cost Custom Cheap wholesaler
In this way, our merchandise have ongoing to acquire market place acceptance and clients pleasure over the past couple of many years. The group is focused on creating all variety of regular roller chains and sprockets, gears & gearboxes, these kinds of as conveyor chain & sprockets , stainless metal chain, agricultural chain and has not just sold its merchandise all more than china, but also marketed a lot more than sixty five% products to oversees, including Europe, The united states, South-east Asia, and it also has set up storage logistics in places like Europe. The group has taken component in the generating and revising of ISO/TC100 international chain regular many a long time in success and hosted the 16th ISO/TC100 International once-a-year assembly in 2004.
EPTT Manufacture CNC EPT Router Working EPTT 1325
The EPTT framework of powerful, big reducing power, large pace,ideal for processing large portions of materials, there are four spindle,it is ideal for processing the identical pattern and form of the plate, 2 times the efficiency of an regular EPTT
two.Item Attributes
EPT-C1325 is common kind woodworking EPTT with substantial performance configuration. The request on a number of components are even increased than of stone router, so that the engraving and chopping work on difficult or thick supplies could be accomplished simply. Most working require on different materials can be metas a normal of multi-functional EPTTs.
1.Square EPT the bed with a lot more sound framework and strong security simply because of low cEPTTr of gravity.EPTT EPTT is welded with seamless steel composition, the rigidity is good , not simple to be deformed.The side board of gantry undertake steel composition.
two.EPT EPTT spindle with great rigidity not only EPTstrates outstanding efficiency in woodworking software,
is also propitious to engrave and reduce on copper, EPT, iron and other metals.
3.With EPTTed rack and EPT transportation system ,mainly boost the velocity of the EPTT .
4EPTTed linear square rails, dual four slider, loading potential, sleek operation and higher precision, EPTT daily life, under the knife precision.
5software compatibility, and suitable with Typ3/Artcam/Castmate / Wentai, and other CAD / CAM layout software program
EPTnical specification
StXiHu (West EPT) Dis.Hu (West EPT) Dis.rd | CE and ISO |
Model | 1325,1530, 2030 |
Operating location(x,y,z aXiHu (West EPT) Dis.s) | 1300x2500mm,1500x3000mm,2000x3000mm |
Spindle | 3.2kw,4.5kw,5.5kw,6kw,9kw can alternative |
EPTT method | DSP handle system (NC can option) |
EPT | stepper motor EPTr |
Inverter | Fulling inverter 3.7kw |
EPTT | XY aXiHu (West EPT) Dis.s is EPT rack,Z aXiHu (West EPT) Dis.s is Ballscrew |
If have EPT pump | Sure, incEPTT 7.5kw (Make sure you note this) |
EPTTble | EPTT profile T-slot table with Vacuum adsorption desk |
Framework | EPT Solid iron human body |
Lubrication | Semi-computerized Lubrication system |
If have the dust EPTor | Indeed, incEPTT |
Device Box | All the stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd instruments incEPTTd |
limited switch | Japan Omron large sensitivity constrained swap |
parts | SchneiEPTTelectronic factors |
Other components | Device sensor, equipment, etc… |
Other cnc router sorts | 400x400mm,600x900mm,1200x1200mm,1200X1800mm, 900x1500mm,1200x2400mm,9500x2000mm,1300x2500mm,1500x3000mm, 2000x3000mm,ATC1325,ATC1218,ATC6090,Multi heads cnc routers |
Information display
EPTT Manufacture CNC EPT Router Operating EPTT 1325
EPTworking Sector:Cnc router can be utilized for solid wooden home furniture,mahogany furniture,MDF paint doorways,strong wooden doorways,composite doors,
cupboard doors and home windows,beside cupboards,folding EPT etc. cnc wood cutter
The advertising Sector:Cnc router can engrave all kinds of signage,emblem products,emblems,nameplates,badges,attractive EPT,embossed
medals,certificates,souvenirs,picture frames,household furniture decoration,PVC plates, PCB boards(drilling and engraving),EPTT shade boards,acrylic and so forth.
Artwork Industry: in the wood, EPT, organic and natural board, double colour plate, crystal and other components on a range of beautiful styles and textual content engraving.
EPTT Business: Showcases, and so forth.
sample disply
EPTT amp cargo :
Conserve space as a lot as attainable for container loading.
- Inside of:Water-evidence Plastic Movie Bundle With Foam Protection
- Exterior:Solid Seaworthy EPT Box Package deal
- Underneath: Metal EPT. 4×8 feet cnc EPTT
Our support:
Prior to sale:
We would alwaEPTTbe below to give any info you need to have at the first time,and give skilled ideas according to your real requirements for totally free
Throughout sale:
We would deal with all the creation and shipping and delivery affairs,after every thing is ready,we would tell you every little thing goes nicely right here 4×8 ft cnc EPTT
Soon after sale:
We would offer EPT Version operating manual.
If you have any questions in the course of employing and mainXiHu (West EPT) Dis.Hu (West EPT) Dis.,our engineers who could sEPT very great english would response you online or by phone calls.
EPTT guarantee is a single yr.So if your EPTT has any unintentional damages,we would give areas for cost-free.
If your EPTT has large difficulties if by any opportunity,our engineers would arrive there to debug and repair.
our expert after sale service team which are chosen by extremely rigid exams,would shell out their 100% time and energy to remedy your troubles!
Our Other kind cnc router EPTTs:
EPTT Manufacture CNC EPT Router Operating EPTT 1325
Our EPTT
EPTEPTTn EPT EPTTry EPT EPTT,Ltd. generating cnc router is situated in EPTEPTTn metropolis, ZheJiang province. We are a specialist and great status maker of CNC router,wooden cnc router, stone cnc router, laser engraving EPTT, CNC plasma cutter, laser chopping EPTT, laser marking EPTT in EPTT to the new and eXiHu (West EPT) Dis.sting customers that are EPT through the South America, Middle EPT, SouthEPT Asia, Africa, Europe and other counties of the planet and the EPTTs has handed the EU CE certification.The purpose of EPTEPTTn STARMA CNC Router is to continuously up grade the technique, to help our customers generate the ideal quality and large precision cnc routers and cnc EPTTs.
FAQ:
one.How EPTT about the EPTT’s promise?
2 years
2.How about your following-sales support ?
EPTnical support by phone, WhatApp,Skype,e-mail or QQ all around the clock.
3.How can we put in the EPTT?
EPT variation manual and operation online video CD disk.
4.How about the payment terms?
30% T/T for deposit, 70%T/T compensated ahead of delivery. T/T, West EPT, Paypal
5.Do you Organize Shipment For The EPTTs?
Indeed, expensive buyers, for FOB or CIF price, we will set up shipment for you.
For EXW price, clientele require to set up cargo by themselves or their agents.
EPTEPTTn EPT EPTTry EPT EPTT,Ltd.
EPTT operating Video web site:
https:///watch?v=NjFXiHu (West EPT) Dis.U8DtXY
https:///look at?v=hlB79GDWW1k
https:///look at?v=rGBwVnBNp_4
in Visakhapatnam India sales price shop near me near me shop factory supplier CNC Plasma Cutting Machine for Sale in China manufacturer best Cost Custom Cheap wholesaler
Moreover, WE CAN Generate Custom-made VARIATORS, GEARED MOTORS, Electrical MOTORS AND OTHER HYDRAULIC Goods According TO CUSTOMERS’ DRAWINGS. With comprehensive requirments, we can also build your specific designed merchandise. We provide OEM service. Merchandise Description
CNC Flame amp Plasma Cutting EPT, also recognized as Gantry-kind Flame amp Plasma Slicing EPT, is successfully employed to cut EPT Function Parts into random shape with over 6-mm thickness
EPT EPT is made up adhering to features:
one. EPToth driving conclude and cross beams undertake box-beam welding composition whose pressure has been relieved, it characteristics compact framework, ligEPT bodyweight, excellent rigidity, modest deformation and creative look.
2. EPT driving of the main EPTitudinal end beam and moving of transverse torch adopts Japan Panasonic servo driver and motor which drives Japan SHEPTO EPT by means of rack-and-pinion gearing.
3. EPT facet of driving finish beam equipped with horizontal XiHu (West Lake) Dis.Hu (West Lake) Dis. wheels which can make the XiHu (West Lake) Dis.Hu (West Lake) Dis. wheel press rail tightly by adjusting its eccentric shaft to guarantee the balance and accuracy.
four. EPT EPTitudinal XiHu (West Lake) Dis.Hu (West Lake) Dis. rails are all produced by substantial depth observe, all the speak to surface area of observe has
precision machining and accurate grinding racks are put in outdoors the XiHu (West Lake) Dis.Hu (West Lake) Dis. way.
five. EPT EPTitudinal XiHu (West Lake) Dis.Hu (West Lake) Dis. rails are firmed by urgent plate backing board and connecting sleeve, which can ensure the EPTitudinal straightness and pXiHu (West Lake) Dis.Hu (West Lake) Dis.lelism of rail.
six. Computerized igniter and heigEPT controller of torch can be chosen according to customer’s prerequisite,
with practical procedure.
EPT Parametre