China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole vacuum pump for ac

Product Description

HMEJ(AC) series Self-Braking Electric Motor
HMEJ series AC brake motor is three-phase asynchronous motor which is totally enclosed squirrel cage with additional AC brake of disk type. It has advantage of fast brake, simple structure, high reliability and good versatility. In additional, the brake has manual work releasing structure which is widely used in mechanical equipment and transmissions devices for various requirements of rapid stop and accurate positioning.
 

TYPE POWER 380V  50Hz  Full Loaded             Weight Housing Material
     
(kw) Speed
(r/min)
Current(A) Eff power factor () () () (Nm) <(s) <(w) (kg)
Synchrouns Speed 3000r/min(2P)380V 50Hz
YEJA711-2 0.37 2756 1 70.0 0.81 6.1 2.2 2.2 4 0.20 40 9.3 ALU
YEJA712-2 0.55 2792 1.4 72.0 0.82 6.1 2.2 2.2 4 0.20 40 10.5
YEJA801-2 0.75 2830 1.9 72.1 0.83 6.1 2.2 2.3 7.5 0.20 50 14
YEJA802-2 1.1 2830 2.7 75.0 0.84 7.0 2.2 2.3 7.5 0.20 50 15
YEJA90S-2 1.5 2840 3.5 77.2 0.84 7.0 2.2 2.3 15 0.20 60 20
YEJA90L-2 2.2 2840 4.9 79.7 0.85 7.0 2.2 2.3 15 0.20 60 23
YEJA100L-2 3 2860 6.4 81.5 0.87 7.5 2.2 2.3 30 0.20 80 31
YEJA112M-2 4 2880 8.3 83.1 0.88 7.5 2.2 2.3 40 0.25 100 44
YEJA132S1-2 5.5 2900 11.2 84.7 0.88 7.5 2.2 2.3 75 0.25 130 80
YEJA132S2-2 7.5 2900 15.1 86.0 0.88 7.5 2.2 2.3 75 0.25 130 94
YEJA160M1-2 11 2930 21.4 87.6 0.89 7.5 2.2 2.3 150 0.35 150 150
YEJA160M2-2 15 2930 28.9 88.7 0.89 7.5 2.2 2.3 150 0.35 150 160
YEJA160L-2 18.5 2930 35 89.3 0.90 7.5 2.2 2.3 150 0.35 150 180
Synchrouns Speed1500r/min(4Pole)380V 50Hz
YEJA711-4 0.25 1390 0.8 65.0 0.74 5.2 2.1 2.2 4 0.20 40 9.3 ALU
YEJA712-4 0.37 1390 1.13 67.0 0.74 5.2 2.1 2.2 4 0.20 40 10.5
YEJA801-4 0.55 1390 1.6 71.0 0.74 5.2 2.4 2.3 7.5 0.20 50 14
YEJA802-4 0.75 1390 2.1 73.0 0.75 6.0 2.3 2.3 7.5 0.20 50 15
YEJA90S-4 1.1 1400 2.9 76.2 0.76 6.0 2.3 2.3 15 0.20 60 20
YEJA90L-4 1.5 1400 3.7 78.5 0.78 6.0 2.3 2.3 15 0.20 60 23
YEJA100L1-4 2.2 1420 5.2 81.0 0.80 7.0 2.3 2.3 30 0.20 80 31
YEJA100L2-4 3 1420 6.8 82.3 0.81 7.0 2.3 2.3 30 0.20 80 33
YEJA112M-4 4 1440 8.8 84.2 0.82 7.0 2.3 2.3 40 0.25 100 44
YEJA132S-4 5.5 1440 11.8 85.7 0.83 7.0 2.3 2.3 75 0.25 130 80 CI
YEJA132M-4 7.5 1440 15.8 87.0 0.84 7.0 2.3 2.3 75 0.25 130 94
YEJA160M-4 11 1460 22.5 88.4 0.84 7.0 2.2 2.3 150 0.35 150 150
YEJA160L-4 15 1460 30 89.4 0.85 7.0 2.2 2.3 150 0.35 150 160
                           
Frame Rated  Output 380V  50Hz  Full Loaded             Weight  
     
(kw) Speed
(r/min)
Current Eff% Power Factor () () () (Nm) <(s) <(w) (kg)
1000r/min(6)380V 50Hz
YEJA711-6 0.18 880 0.74 56.0 0.66 4.0 1.9 2.0 4 0.20 40 9.3 ALU
YEJA712-6 0.25 880 0.95 59.0 0.68 4.0 1.9 2.0 4 0.20 40 10.5
YEJA801-6 0.37 900 1.3 62.0 0.70 4.7 1.9 2.0 7.5 0.20 50 14
YEJA802-6 0.55 900 1.8 65.0 0.70 4.7 1.9 2.1 7.5 0.20 50 15
YEJA90S-6 0.75 910 2.3 69.0 0.70 5.5 2.0 2.1 15 0.20 60 20
YEJA90L-6 1.1 910 3.2 72.0 0.72 5.5 2.0 2.1 15 0.20 60 23
YEJA100L-6 1.5 940 4.0 76.0 0.74 5.5 2.0 2.1 30 0.20 80 33
YEJA112M-6 2.2 950 5.7 79.0 0.74 6.5 2.0 2.1 40 0.25 100 44
YEJA132S-6 3 960 7.4 81.0 0.76 6.5 2.1 2.1 75 0.25 130 80 CI
YEJA132M1-6 4 960 9.8 82.0 0.76 6.5 2.1 2.1 75 0.25 130 90
YEJA132M2-6 5.5 960 12.9 84.0 0.77 6.5 2.1 2.1 75 0.25 130 94
YEJA160M-6 7.5 970 17.2 86.0 0.77 6.5 2.0 2.1 150 0.35 150 150
YEJA160L-6 11 970 24.5 87.5 0.78 6.5 2.0 2.1 150 0.35 150 160
750r/min(8)380V 50Hz
YEJA801-8 0.18 690 0.94 51.0 0.57 3.3 1.8 1.9 7.5 0.20 50 14 ALU
YEJA802-8 0.25 690 1.2 54.0 0.58 3.3 1.8 1.9 7.5 0.20 50 15
YEJA90S-8 0.37 690 1.5 62.0 0.60 4.0 1.8 1.9 15 0.20 60 20
YEJA90L-8 0.55 690 2.2 63.0 0.61 4.0 1.8 2.0 15 0.20 60 23
YEJA100L1-8 0.75 700 2.4 71.0 0.67 4.0 1.8 2.0 30 0.20 80 31
YEJA100L2-8 1.1 700 3.3 73.0 0.69 5.0 1.8 2.0 30 0.20 80 33
YEJA112M-8 1.5 700 4.4 75.0 0.69 5.0 1.8 2.0 40 0.25 100 44
YEJA132S-8 2.2 710 6.0 80.5 0.71 6.0 1.8 2.0 75 0.25 130 80 CI
YEJA132M-8 3 710 8.1 82.5 0.71 6.0 1.8 2.0 75 0.25 130 94
YEJA160M1-8 4 720 10.3 84.0 0.73 6.0 1.9 2.0 150 0.35 150 140
YEJA160M2-8 5.5 720 13.6 85.0 0.74 6.0 2.0 2.0 150 0.35 150 150
YEJA160L-8 7.5 720 18.4 86.0 0.74 6.0 2.0 2.0 150 0.35 150 160

    Our factory

                         
Contact us

   /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances
Operating Speed: High Speed
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Type: Y2ej
Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole   vacuum pump for ac	China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole   vacuum pump for ac
editor by CX 2024-04-10

Leave a Reply

Your email address will not be published. Required fields are marked *