Product Description
Product Description
Introduction:
YEJ2, YDEJ2 series electromagnetic brake motors are improved products of YEJ series. It is in accordance with JB/T6456 requirements, and its electrical performance is in accord with Y2 series technical standard. The electric power of the controller should be synchronized with the electric power of the motor.
The electric motors are equipped with the electromagnetic brake on the non-shaft end. When electricity off, the retarding disc will automatically press in endshield which produces friction brake torque and stops the running of motor, the no-load brake duration is changed with the frame size of the motor, the range is 0.15-0.45 seconds. This kind of motor is considered as the driving force of various machinery and widely used in mechanical workout machine tool, transport machinery, package, woodworking, food machinery chemical engineering, textile, construction, shop, roll door machinery.
Operating Conditions
Centre height of frame: 63-225mm |
Controller’s power: |
centre height of frame:100mm, AC220V(after commutate 99V) centre height of frame:112mm, AC380V(after commutatel70V) |
Rated voltage: 380V or order |
Rated frequency: 50Hz or 60HZ |
Power range:0.12-45kW |
Ingress Protection:IP54(or IP55) |
Insulation Class: B/F Duty type:SI |
Rated Parameters
Base Center Height:63-255 mm Power Range: 0.12-0.45 kW
Nsulation Class: B /f Protection Class: IP54 (or IP55)
Work System: S1 Rated Voltage: 380V
Mounting Structure:
B3 Frame without foot cover end flange
B35 Frame with foot cover end flange
B5 Frame with foot cover end flange
INSTALLATION SIZE AND OVERALL DILMENSION | ||||||||||||||||||||||||
FRAME | INSTALLATION SIZE | OVERALL DIMENSIONS | ||||||||||||||||||||||
IMB5 | IMB14 | IMB3 | ||||||||||||||||||||||
A | B | C | D | E | F | G | H | K | M | N | P | S | T | M | N | P | S | T | AB | AC | AD | HD | L | |
56 | 90 | 71 | 36 | 9 | 20 | 3 | 7.2 | 56 | 5.8 | 65 | 50 | 80 | M5 | 2.5 | 98 | 80 | 120 | 7 | 3 | 110 | 120 | 110 | 155 | 195 |
63 | 100 | 80 | 40 | 11 | 23 | 4 | 8.5 | 63 | 7 | 75 | 60 | 90 | M5 | 2.5 | 115 | 95 | 140 | 10 | 3 | 130 | 130 | 115 | 165 | 230 |
71 | 112 | 90 | 45 | 14 | 30 | 5 | 11 | 71 | 7 | 85 | 70 | 105 | M6 | 2.5 | 120 | 110 | 160 | 10 | 3.5 | 145 | 145 | 125 | 185 | 225 |
80 | 125 | 100 | 50 | 19 | 40 | 6 | 15.5 | 80 | 10 | 100 | 80 | 120 | M6 | 3 | 165 | 130 | 200 | 12 | 3.5 | 160 | 165 | 135 | 215 | 295 |
90S | 140 | 100 | 56 | 24 | 50 | 8 | 20 | 90 | 10 | 115 | 95 | 140 | M8 | 3 | 165 | 130 | 200 | 12 | 3.5 | 180 | 185 | 145 | 235 | 335 |
90L | 140 | 125 | 56 | 24 | 50 | 8 | 20 | 90 | 10 | 115 | 95 | 140 | M8 | 3 | 165 | 130 | 200 | 12 | 3.5 | 180 | 185 | 145 | 235 | 360 |
100L | 160 | 140 | 63 | 28 | 60 | 8 | 24 | 100 | 12 | 130 | 110 | 160 | M8 | 3.5 | 215 | 180 | 250 | 15 | 4 | 205 | 215 | 170 | 255 | 380 |
112M | 190 | 140 | 70 | 28 | 60 | 8 | 24 | 112 | 12 | 130 | 110 | 160 | M8 | 3.5 | 215 | 180 | 250 | 15 | 4 | 145 | 240 | 180 | 285 | 400 |
132S | 216 | 140 | 89 | 38 | 80 | 10 | 33 | 132 | 12 | 165 | 130 | 200 | M10 | 4 | 265 | 230 | 300 | 15 | 4 | 280 | 275 | 195 | 325 | 475 |
132M | 216 | 178 | 89 | 38 | 80 | 10 | 33 | 132 | 12 | 165 | 130 | 200 | M10 | 4 | 265 | 230 | 300 | 15 | 4 | 280 | 275 | 195 | 325 | 515 |
160M | 254 | 210 | 108 | 42 | 110 | 12 | 37 | 160 | 15 | / | / | / | / | / | 300 | 250 | 350 | 19 | 5 | 325 | 325 | 255 | 385 | 600 |
160L | 254 | 254 | 108 | 42 | 110 | 12 | 37 | 160 | 15 | / | / | / | / | / | 300 | 250 | 350 | 19 | 5 | 325 | 325 | 255 | 385 | 645 |
180M | 279 | 279 | 121 | 48 | 110 | 14 | 42.5 | 180 | 15 | / | / | / | / | / | 300 | 250 | 350 | 19 | 5 | 355 | 380 | 280 | 455 | 700 |
180L | 279 | 279 | 121 | 48 | 110 | 14 | 42.5 | 180 | 15 | / | / | / | / | / | 300 | 250 | 350 | 19 | 5 | 355 | 380 | 280 | 455 | 740 |
Factory Advantages
1 . 15 years history
2. Competitive Price
3. Guaranteed Quality
4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days
5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.
6. High efficiency
7. Low noise
8. Long life
9. Power saving
10. Slight vibration
11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;
12. Professional Service
13. Warranty: 12 months from date of delivery
14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on
15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !
Detailed Photos
Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer’s application. Our based Engineering Design team work with you to ensure the motor meets your individual needs.
2 ,4,6 ,8 and 10 pole operation. with CE Approvals available
All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Variable Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Protection Type |
Number of Poles: | 2 |
Samples: |
US$ 75/PCS
1 PCS(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can AC motors be used in both residential and commercial settings?
Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.
In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.
In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:
- Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
- HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
- Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
- Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
- Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
- Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.
The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.
Are there energy-saving technologies or features available in modern AC motors?
Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:
- High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
- Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
- Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
- Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
- Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
- Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
- Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.
By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.
What are the main components of an AC motor, and how do they contribute to its operation?
An AC motor consists of several key components that work together to facilitate its operation. These components include:
- Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
- Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
- Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
- End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
- Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
- Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
- Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.
Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.
editor by CX 2024-05-08