Product Description
Product Description
model | Number of poles | Phase | Rated voltage | Rated speed | Continuous locked-rotor torque | Rated torque | Rated power | Peak torque |
Units | VDC | RPM | N.m | N.m | W | N.m | ||
42BYA075B030C-02 | 4 | 3 | 24 | 3000 | 0.192 | 0.16 | 50 | 0.48 |
model | Peak current | Torque constant | Back EMF | Motor length | Motor length | voltage range | Range of rotation | weight |
Units | A | Nm/A | V/KRPM | g.cMoment of inertia | mm | VDC | RPM | Kg |
42BYA075B030C-02 | 9.6 | 0.05 | 3.947 | 14.6 | 134 | 24~48 | 1000~3000 | 1.0 |
Product Parameters
Quiet stable and reliable for long life operation
1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | |
---|
How to Select a Gear Motor
A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.
Angular geared motors
Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Planetary gearboxes
Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Hydraulic gear motors
Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Croise motors
There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.
editor by CX 2023-05-26
China high quality High Torque BLDC Planetary Gearbox DC Gear Motor with Hot selling
Product Description
Product Description
model | Number of poles | Phase | Rated voltage | Rated speed | Continuous locked-rotor torque | Rated torque | Rated power | Peak torque |
Units | VDC | RPM | N.m | N.m | W | N.m | ||
42BYA075B030C-02 | 4 | 3 | 24 | 3000 | 0.192 | 0.16 | 50 | 0.48 |
model | Peak current | Torque constant | Back EMF | Motor length | Motor length | voltage range | Range of rotation | weight |
Units | A | Nm/A | V/KRPM | g.cMoment of inertia | mm | VDC | RPM | Kg |
42BYA075B030C-02 | 9.6 | 0.05 | 3.947 | 14.6 | 134 | 24~48 | 1000~3000 | 1.0 |
Product Parameters
Quiet stable and reliable for long life operation
1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by CX 2023-05-25
China 86mm Width BLDC Motor with Planetary / Worm Gearbox / Brake / Encoder / Controller Brushless DC Gear Geared Motor Used for Sliding Door with Customized Service car motor
Merchandise Description
86mm Width BLDC Motor with Planetary / Worm Gearbox / Brake / Encoder / Controller Brushless Dc Gear Geared Motor Utilized for Sliding Door with Custom-made Support
Item Description
Solution Title: Brushless DC Motor
Amount of Stage: 3 Phase
Amount of Poles: 4 Poles /8 Poles /ten Poles
Rated Voltage: 12v /24v /36v /48v /310v
Rated Speed: 3000rpm /4000rpm /or personalized
Rated Torque: Personalized
Rated Present: Custom-made
Rated Electricity: 23w~2500W
Jkongmotor has a broad range of micro motor manufacturing traces in the sector, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Equipment Motor, Planetary Gearbox and many others. Through technological innovation and customization, we assist you generate outstanding application methods and provide adaptable remedies for a variety of industrial automation situations.
86mm 48V Dc Brushless Motor Parameters:
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Period | Stage | 3 | ||||
Variety Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Velocity | Rpm | 3000 | ||||
Rated Torque | N.m | .35 | .7 | one.05 | 1.four | 2.one |
Rated Existing | Amps | three | six.three | nine | 11.five | 18 |
Rated Energy | W | one hundred ten | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | three.15 | four.2 | 6.3 |
Peak Present | Amps | nine | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | thirteen.7 | thirteen | 13.5 | 13.7 | thirteen.five |
Torque Constant | N.m/A | .13 | .12 | .thirteen | .13 | .13 |
Rotor Inertia | g.cm2 | four hundred | 800 | 1200 | 1600 | 2400 |
Human body Size | mm | 71 | 84.five | ninety eight | 111.five | 138.5 |
Excess weight | Kg | one.5 | 1.9 | two.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Diploma of Defense | IP30 | |||||
Storage Temperature | -twenty five~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Functioning Humidity | 85% RH or under (no condensation) | |||||
Operating Atmosphere | Outdoor (no direct sunlight), no corrosive gasoline, no flammable fuel, no oil mist, no dust | |||||
Altitude | 1000 meters or considerably less |
86mm Gearbox Parameters:
Gearbox Electrical Specification: | ||||||
Phase | One phase | Two phase | Three stage | |||
Ratio | 3,4,5,8,ten | 12,fifteen,16,twenty,twenty five,32,forty,sixty four,a hundred | 64,80,100,120,125,a hundred and sixty,200,256,320,512,one thousand | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | sixty five | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Effectiveness (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Excess weight (Kg) | 3.2 | 3.nine | 4.8 | |||
Typical usefui life (h) | >10000 | |||||
Lubricating method | Long-phrase | |||||
Rotation route | Input/Output syntropy | |||||
Defense degree | IP65 |
86mm Planetary Gearbox Parameters:
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specs | |||
Module | 1 | ||
No. of tooth | twelve | 13 | 22 |
Stress angle | 20° | ||
Hole diameter | 10 tooth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | one/5.31 1/19 1/30 1/74 1/111 | one/3.55 1/13 1/fifty |
Gearbox Specs: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Performance | L (mm) | Excess weight (g) |
one/3.55 1/5.31 1/6.six | 1/3.55 1/5.31 1/6.6 | eight N.m Max | 12 N.m | .9 | 55.7±0.5 | 1100 |
one/13 1/19 1/23 | 1/twelve.57 1/eighteen.82 1/23.four | thirty N.m Max | 45 N.m | 81% | seventy two.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | .73 | 72.2±0.five | 1500 |
one/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction Motor Max. enter velocity: <4000rpm Operating temperature range: -15ºC ~ +80ºC |
Other Brushless Dc Motor
42mm 24V Brushless DC Motor Parameters:
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Variety Of Period | Stage | 3 | |||
Quantity Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | .0625 | .125 | .185 | .25 |
Peak Existing | Amps | 1.8 | 3.3 | 4.8 | six.three |
Rated Electricity | W | 26 | 52.5 | seventy seven.5 | a hundred and five |
Peak Torque | N.m | .19 | .38 | .56 | .seventy five |
Peak Recent | Amps | 5.4 | 10.six | fifteen.five | 20 |
Back E.M.F | V/Krpm | four.1 | four.2 | 4.three | 4.three |
Torque Continual | N.m/A | .039 | .04 | .041 | .041 |
Rotor Inertia | g.cm2 | 24 | 48 | seventy two | ninety six |
Physique Duration | mm | ||||
Excess weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Working Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or under (no condensation) | ||||
Operating Environment | Outdoor (no immediate sunlight), no corrosive gas, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
57mm 36V Brushless DC Motor Parameters:
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Variety Of Section | Section | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Pace | Rpm | 4000 | ||||
Rated Torque | N.m | .055 | .eleven | .22 | .33 | .forty four |
Rated Existing | Amps | 1.two | two | 3.6 | five.3 | six.eight |
Rated Energy | W | 23 | forty six | 92 | 138 | 184 |
Peak Torque | N.m | .16 | .33 | .66 | one | one.32 |
Peak Present | Amps | three.five | six.eight | 11.5 | 15.5 | twenty.5 |
Back E.M.F | V/Krpm | 7.eight | seven.7 | seven.four | 7.3 | seven.one |
Torque Consistent | N.m/A | .074 | .073 | .07 | .07 | .068 |
Rotor Inertia | g.cm2 | 30 | seventy five | 119 | 173 | 230 |
Entire body Size | mm | 37 | forty seven | 67 | 87 | 107 |
Weight | Kg | .33 | .44 | .75 | one | one.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Diploma of Security | IP30 | |||||
Storage Temperature | -twenty five~+70ºC | |||||
Running Temperature | -fifteen~+50ºC | |||||
Working Humidity | 85% RH or underneath (no condensation) | |||||
Working Setting | Outdoor (no direct sunlight), no corrosive gasoline, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or considerably less |
60mm 48V Brushless DC Motor Parameters:
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Period | Stage | 3 | |||
Variety Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Pace | Rpm | 3000 | |||
Rated Torque | N.m | .three | .six | .nine | one.two |
Rated Existing | Amps | 2.eight | 5.two | 7.5 | 9.five |
Rated Energy | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | .nine | 1.eight | two.seven | three.6 |
Peak Current | Amps | 8.four | fifteen.six | 22.five | 28.5 |
Back again E.M.F | V/Krpm | twelve.1 | twelve.6 | twelve.4 | 13.3 |
Torque Constant | N.m/A | .116 | .twelve | .118 | .127 |
Rotor Inertia | kg.cm2 | .24 | .forty eight | .72 | .96 |
Entire body Length | mm | seventy eight | ninety nine | 120 | 141 |
Excess weight | Kg | .eighty five | 1.twenty five | one.sixty five | two.05 |
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Diploma of Defense | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Running Temperature | -15~+50ºC | ||||
Operating Humidity | 85% RH or under (no condensation) | ||||
Operating Atmosphere | Outdoor (no direct sunlight), no corrosive gas, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or much less |
80mm 48V BLDC Motor Parameters:
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Section | Stage | 3 | |||
Variety Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | .35 | .7 | one.05 | 1.four |
Rated Current | Amps | 3 | five.5 | eight | 10.five |
Rated Energy | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | two.one | three.fifteen | 4.two |
Peak Current | Amps | nine | sixteen.five | 24 | 31.5 |
Again E.M.F | V/Krpm | 13.five | 13.three | 13.1 | thirteen |
Torque Continuous | N.m/A | .thirteen | .127 | .126 | .124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Duration | mm | seventy eight | ninety eight | 118 | 138 |
Bodyweight | Kg | 1.4 | two | 2.6 | 3.two |
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Degree of Defense | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Running Temperature | -fifteen~+50ºC | ||||
Functioning Humidity | 85% RH or beneath (no condensation) | ||||
Operating Setting | Outdoor (no immediate sunlight), no corrosive gasoline, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or much less |
110mm 310V Brushless Motor Parameters:
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Variety Of Section | Period | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Velocity | Rpm | 3400 | |||
Rated Torque | N.m | two.38 | three.3 | five | 6.6 |
Rated Present | Amps | .five | .6 | .8 | 1 |
Rated Electricity | KW | .75 | one.03 | 1.57 | two.07 |
Back again E.M.F | V/Krpm | ninety one.1 | 91.one | 91.one | 88.6 |
Torque Continual | N.m/A | .87 | .87 | .87 | .845 |
Entire body Length | mm | 130 | a hundred and fifty five | a hundred and eighty | 205 |
Sensor | Honeywell | ||||
Insulation Course | H |
Stepping Motor Customized
Planetary Gearbox Kind:
Thorough Pictures
Cnc Motor Kits Brushless dc Motor with Brake
Brushless Dc Motor with Planetary Gearbox Bldc Motor with Encoder
Brushless Dc Motor Brushed Dc Motor Hybrid Stepper Motor
Organization Profile
HangZhou CZPT Co., Ltd was a substantial technologies sector zone in HangZhou, china. Our products utilised in many types of machines, these kinds of as 3d printer CNC machine, health care gear, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other firms to establish prolonged-term cooperation with us.
Company spirit of sincere and excellent track record, received the recognition and support of the broad masses of clients, at the same time with the domestic and overseas suppliers close group of interests, the organization entered the stage of stage of benign development, laying a sound basis for the strategic purpose of recognizing only really the sustainable growth of the company.
Equipments Display:
Manufacturing Circulation:
Package deal:
Certification:
US $10-50 / Piece | |
10 Pieces (Min. Order) |
###
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) need to confirm the cost with seller
|
---|
###
Customization: |
Available
|
---|
###
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Speed | Rpm | 3000 | ||||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 | 2.1 |
Rated Current | Amps | 3 | 6.3 | 9 | 11.5 | 18 |
Rated Power | W | 110 | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 | 6.3 |
Peak Current | Amps | 9 | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | 13.7 | 13 | 13.5 | 13.7 | 13.5 |
Torque Constant | N.m/A | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 |
Rotor Inertia | g.cm2 | 400 | 800 | 1200 | 1600 | 2400 |
Body Length | mm | 71 | 84.5 | 98 | 111.5 | 138.5 |
Weight | Kg | 1.5 | 1.9 | 2.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Gearbox Electrical Specification: | ||||||
Stage | One stage | Two stage | Three stage | |||
Ratio | 3,4,5,8,10 | 12,15,16,20,25,32,40,64,100 | 64,80,100,120,125,160,200,256,320,512,1000 | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | 65 | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Efficiency (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Weight (Kg) | 3.2 | 3.9 | 4.8 | |||
Average usefui life (h) | >10000 | |||||
Lubricating system | Long-term | |||||
Rotation direction | Input/Output syntropy | |||||
Protection level | IP65 |
###
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specifications | |||
Module | 1 | ||
No. of teeth | 12 | 13 | 22 |
Pressure angle | 20° | ||
Hole diameter | 10 teeth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | 1/5.31 1/19 1/30 1/74 1/111 | 1/3.55 1/13 1/50 |
###
Gearbox Specifications: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Efficiency | L (mm) | Weight (g) |
1/3.55 1/5.31 1/6.6 | 1/3.55 1/5.31 1/6.6 | 8 N.m Max | 12 N.m | 0.9 | 55.7±0.5 | 1100 |
1/13 1/19 1/23 | 1/12.57 1/18.82 1/23.4 | 30 N.m Max | 45 N.m | 81% | 72.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | 0.73 | 72.2±0.5 | 1500 |
1/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction; Motor Max. input speed: <4000rpm; Operating temperature range: -15ºC ~ +80ºC |
###
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | 0.0625 | 0.125 | 0.185 | 0.25 |
Peak Current | Amps | 1.8 | 3.3 | 4.8 | 6.3 |
Rated Power | W | 26 | 52.5 | 77.5 | 105 |
Peak Torque | N.m | 0.19 | 0.38 | 0.56 | 0.75 |
Peak Current | Amps | 5.4 | 10.6 | 15.5 | 20 |
Back E.M.F | V/Krpm | 4.1 | 4.2 | 4.3 | 4.3 |
Torque Constant | N.m/A | 0.039 | 0.04 | 0.041 | 0.041 |
Rotor Inertia | g.cm2 | 24 | 48 | 72 | 96 |
Body Length | mm | ||||
Weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Speed | Rpm | 4000 | ||||
Rated Torque | N.m | 0.055 | 0.11 | 0.22 | 0.33 | 0.44 |
Rated Current | Amps | 1.2 | 2 | 3.6 | 5.3 | 6.8 |
Rated Power | W | 23 | 46 | 92 | 138 | 184 |
Peak Torque | N.m | 0.16 | 0.33 | 0.66 | 1 | 1.32 |
Peak Current | Amps | 3.5 | 6.8 | 11.5 | 15.5 | 20.5 |
Back E.M.F | V/Krpm | 7.8 | 7.7 | 7.4 | 7.3 | 7.1 |
Torque Constant | N.m/A | 0.074 | 0.073 | 0.07 | 0.07 | 0.068 |
Rotor Inertia | g.cm2 | 30 | 75 | 119 | 173 | 230 |
Body Length | mm | 37 | 47 | 67 | 87 | 107 |
Weight | Kg | 0.33 | 0.44 | 0.75 | 1 | 1.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.3 | 0.6 | 0.9 | 1.2 |
Rated Current | Amps | 2.8 | 5.2 | 7.5 | 9.5 |
Rated Power | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | 0.9 | 1.8 | 2.7 | 3.6 |
Peak Current | Amps | 8.4 | 15.6 | 22.5 | 28.5 |
Back E.M.F | V/Krpm | 12.1 | 12.6 | 12.4 | 13.3 |
Torque Constant | N.m/A | 0.116 | 0.12 | 0.118 | 0.127 |
Rotor Inertia | kg.cm2 | 0.24 | 0.48 | 0.72 | 0.96 |
Body Length | mm | 78 | 99 | 120 | 141 |
Weight | Kg | 0.85 | 1.25 | 1.65 | 2.05 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 |
Rated Current | Amps | 3 | 5.5 | 8 | 10.5 |
Rated Power | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 |
Peak Current | Amps | 9 | 16.5 | 24 | 31.5 |
Back E.M.F | V/Krpm | 13.5 | 13.3 | 13.1 | 13 |
Torque Constant | N.m/A | 0.13 | 0.127 | 0.126 | 0.124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Length | mm | 78 | 98 | 118 | 138 |
Weight | Kg | 1.4 | 2 | 2.6 | 3.2 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Speed | Rpm | 3400 | |||
Rated Torque | N.m | 2.38 | 3.3 | 5 | 6.6 |
Rated Current | Amps | 0.5 | 0.6 | 0.8 | 1 |
Rated Power | KW | 0.75 | 1.03 | 1.57 | 2.07 |
Back E.M.F | V/Krpm | 91.1 | 91.1 | 91.1 | 88.6 |
Torque Constant | N.m/A | 0.87 | 0.87 | 0.87 | 0.845 |
Body Length | mm | 130 | 155 | 180 | 205 |
Sensor | Honeywell | ||||
Insulation Class | H |
US $10-50 / Piece | |
10 Pieces (Min. Order) |
###
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) need to confirm the cost with seller
|
---|
###
Customization: |
Available
|
---|
###
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Speed | Rpm | 3000 | ||||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 | 2.1 |
Rated Current | Amps | 3 | 6.3 | 9 | 11.5 | 18 |
Rated Power | W | 110 | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 | 6.3 |
Peak Current | Amps | 9 | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | 13.7 | 13 | 13.5 | 13.7 | 13.5 |
Torque Constant | N.m/A | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 |
Rotor Inertia | g.cm2 | 400 | 800 | 1200 | 1600 | 2400 |
Body Length | mm | 71 | 84.5 | 98 | 111.5 | 138.5 |
Weight | Kg | 1.5 | 1.9 | 2.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Gearbox Electrical Specification: | ||||||
Stage | One stage | Two stage | Three stage | |||
Ratio | 3,4,5,8,10 | 12,15,16,20,25,32,40,64,100 | 64,80,100,120,125,160,200,256,320,512,1000 | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | 65 | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Efficiency (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Weight (Kg) | 3.2 | 3.9 | 4.8 | |||
Average usefui life (h) | >10000 | |||||
Lubricating system | Long-term | |||||
Rotation direction | Input/Output syntropy | |||||
Protection level | IP65 |
###
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specifications | |||
Module | 1 | ||
No. of teeth | 12 | 13 | 22 |
Pressure angle | 20° | ||
Hole diameter | 10 teeth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | 1/5.31 1/19 1/30 1/74 1/111 | 1/3.55 1/13 1/50 |
###
Gearbox Specifications: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Efficiency | L (mm) | Weight (g) |
1/3.55 1/5.31 1/6.6 | 1/3.55 1/5.31 1/6.6 | 8 N.m Max | 12 N.m | 0.9 | 55.7±0.5 | 1100 |
1/13 1/19 1/23 | 1/12.57 1/18.82 1/23.4 | 30 N.m Max | 45 N.m | 81% | 72.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | 0.73 | 72.2±0.5 | 1500 |
1/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction; Motor Max. input speed: <4000rpm; Operating temperature range: -15ºC ~ +80ºC |
###
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | 0.0625 | 0.125 | 0.185 | 0.25 |
Peak Current | Amps | 1.8 | 3.3 | 4.8 | 6.3 |
Rated Power | W | 26 | 52.5 | 77.5 | 105 |
Peak Torque | N.m | 0.19 | 0.38 | 0.56 | 0.75 |
Peak Current | Amps | 5.4 | 10.6 | 15.5 | 20 |
Back E.M.F | V/Krpm | 4.1 | 4.2 | 4.3 | 4.3 |
Torque Constant | N.m/A | 0.039 | 0.04 | 0.041 | 0.041 |
Rotor Inertia | g.cm2 | 24 | 48 | 72 | 96 |
Body Length | mm | ||||
Weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Speed | Rpm | 4000 | ||||
Rated Torque | N.m | 0.055 | 0.11 | 0.22 | 0.33 | 0.44 |
Rated Current | Amps | 1.2 | 2 | 3.6 | 5.3 | 6.8 |
Rated Power | W | 23 | 46 | 92 | 138 | 184 |
Peak Torque | N.m | 0.16 | 0.33 | 0.66 | 1 | 1.32 |
Peak Current | Amps | 3.5 | 6.8 | 11.5 | 15.5 | 20.5 |
Back E.M.F | V/Krpm | 7.8 | 7.7 | 7.4 | 7.3 | 7.1 |
Torque Constant | N.m/A | 0.074 | 0.073 | 0.07 | 0.07 | 0.068 |
Rotor Inertia | g.cm2 | 30 | 75 | 119 | 173 | 230 |
Body Length | mm | 37 | 47 | 67 | 87 | 107 |
Weight | Kg | 0.33 | 0.44 | 0.75 | 1 | 1.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.3 | 0.6 | 0.9 | 1.2 |
Rated Current | Amps | 2.8 | 5.2 | 7.5 | 9.5 |
Rated Power | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | 0.9 | 1.8 | 2.7 | 3.6 |
Peak Current | Amps | 8.4 | 15.6 | 22.5 | 28.5 |
Back E.M.F | V/Krpm | 12.1 | 12.6 | 12.4 | 13.3 |
Torque Constant | N.m/A | 0.116 | 0.12 | 0.118 | 0.127 |
Rotor Inertia | kg.cm2 | 0.24 | 0.48 | 0.72 | 0.96 |
Body Length | mm | 78 | 99 | 120 | 141 |
Weight | Kg | 0.85 | 1.25 | 1.65 | 2.05 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 |
Rated Current | Amps | 3 | 5.5 | 8 | 10.5 |
Rated Power | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 |
Peak Current | Amps | 9 | 16.5 | 24 | 31.5 |
Back E.M.F | V/Krpm | 13.5 | 13.3 | 13.1 | 13 |
Torque Constant | N.m/A | 0.13 | 0.127 | 0.126 | 0.124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Length | mm | 78 | 98 | 118 | 138 |
Weight | Kg | 1.4 | 2 | 2.6 | 3.2 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Speed | Rpm | 3400 | |||
Rated Torque | N.m | 2.38 | 3.3 | 5 | 6.6 |
Rated Current | Amps | 0.5 | 0.6 | 0.8 | 1 |
Rated Power | KW | 0.75 | 1.03 | 1.57 | 2.07 |
Back E.M.F | V/Krpm | 91.1 | 91.1 | 91.1 | 88.6 |
Torque Constant | N.m/A | 0.87 | 0.87 | 0.87 | 0.845 |
Body Length | mm | 130 | 155 | 180 | 205 |
Sensor | Honeywell | ||||
Insulation Class | H |
How to Select a Gear Motor
A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.
Angular geared motors
Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Planetary gearboxes
Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Hydraulic gear motors
Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Croise motors
There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.
editor by czh 2023-01-09
China 36mm High Torque 5n. M 10n. M 24V Brushed Brushless BLDC Planetary Gearbox Gear Motor for Robot motor engine
Product Description
SHN Motors
1.Features
1) Step Angle Accuracy: ±5%
2) Resistance Accuracy: ±10%
3) Inductance Accuracy: ±20%
4) Temperature Rise: 80°C Max
5) Ambient Temperature: -20°C~+50°C
6) Insulation Resistance: 100MΩ Min., 500VDC
7) Dielectric Strength: 500VAC for 1 minute
8) Shaft Radial Play: 0.02Max (450g-load)
9) Shaft Axial Play: 0.08Max (450g-load)
2.Related Specifications
1) 42mm series
Model | DMW421 | DMW422 | DMW423 | |
Voltage | V | 24 | ||
No load speed | rpm | 5000 | 5000 | 5000 |
Rated torque | Nm | 0.063 | 0.094 | 0.125 |
Rated Speed | rpm | 4000 | 4000 | 4000 |
Rated Current | A | 1.7 | 2.5 | 3.5 |
Torque(max) | Nm | 0.19 | 0.27 | 0.38 |
Back-EMF constant | V/Krpm | 3.13 | 3.13 | 3.15 |
Torque Constant | Nm/A | 0.039 | 0.04 | 0.04 |
Resistance | ohm | 1.5 | 0.53 | 0.74 |
Weight | Kg | 0.3 | 0.4 | 0.5 |
Length | mm | 41 | 51 | 6 |
2) 70mmSeries
Model | Rated Voltage | No load speed |
Rated torque | Rated Speed | Rated Current |
Rated power |
L |
VDC | RPM | Nm | rpm | A | W | mm | |
DMW701 | 48 | 3500 | 0.5 | 3000 | 4.3 | 157 | 86 |
DMW702 | 48 | 3500 | 1 | 3000 | 8.7 | 314 | 116 |
DMW703 | 48 | 3500 | 1.5 | 3000 | 12.9 | 471 | 136 |
3) 80mmSeries
Model | DMW801 | DMW802 | DMW803 | |
Voltage | V | 24 | ||
No load speed | rpm | 4200 | 4200 | 4200 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 5.2 | 10.5 | 15 |
Rated power | W | 79 | 157 | 236 |
Back-EMF constant | V/Krpm | 9 | 9.2 | 9.5 |
Torque Constant | Nm/A | 0.06 | 0.052 | 0.05 |
Resistance | ohm | 0.5 | 0.43 | 0.35 |
Weight | Kg | 1.6 | 2.2 | 3 |
Length | mm | 75 | 95 | 115 |
4) 86mmSeries
Model | DMW861 | DMW862 | DMW863 | |
Voltage | V | 48 | ||
No load speed | rpm | 3500 | 3500 | 3400 |
Rated torque | Nm | 1.0 | 1.8 | 2.5 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 8.6 | 14.8 | 20 |
Torque(max) | Nm | 3.0 | 5.4 | 7.5 |
Back-EMF constant | V/Krpm | 9.8 | 9.8 | 10 |
Torque Constant | Nm/A | 0.13 | 0.13 | 0.14 |
Resistance | ohm | 0.32 | 0.15 | 0.1 |
Weight | Kg | 2.2 | 3.2 | 4.2 |
Length | mm | 80 | 105 | 130 |
5) 60mmSeries
Model | DMW601 | DMW602 | DMW603 | |
Voltage | V | 36 | ||
No load speed | rpm | 4100 | 4100 | 4100 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 3 | 6 | 9 |
Torque(max) | Nm | 0.75 | 1.5 | 2 |
Back-EMF constant | V/Krpm | 6.2 | 6.5 | 6.5 |
Torque Constant | Nm/A | 0.043 | 0.045 | 0.041 |
Resistance | ohm | 0.59 | 0.26 | 0.2 |
Weight | Kg | 0.9 | 1.2 | 1.6 |
Length | mm | 78 | 99 | 120 |
6) 57mm Series
Model | DMW571 | DMW572 | DMW573 | DMW574 | ||
Voltage | V | 36 | ||||
No load speed | rpm | 5200 | 5200 | 5300 | 5400 | |
Rated torque | Nm | 0.11 | 0.22 | 0.32 | 0.42 | |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 | |
Rated Current | A | 1.8 | 3.2 | 4.7 | 6.5 | |
Torque(max) | Nm | 0.3 | 0.5 | 0.8 | 1.2 | |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 | |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 | |
Resistance | ohm | 1.7 | 0.75 | 0.5 | 0.39 | |
Weight | Kg | 0.45 | 0.8 | 1.1 | 1.4 | |
Length | mm | 55 | 75 | 95 | 115 |
7) 57 High Torque
Model | DMW571 | DMW572 | DMW573 | DMW574 | |
Voltage | V | 36 | |||
No load speed | rpm | 5200 | 5200 | 5200 | 5200 |
Rated torque | Nm | 0.14 | 0.28 | 0.43 | 0.49 |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 |
Rated Current | A | 2.2 | 4.5 | 6.8 | 7.9 |
Torque(max) | Nm | 0.4 | 0.6 | 0.9 | 1.5 |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 |
Resistance | ohm | 2 | 0.9 | 0.7 | 0.5 |
Weight | Kg | 0.5 | 0.9 | 1.3 | 1.8 |
Length | mm | 55 | 75 | 95 | 115 |
3.Outlines/Drawings
4.About US
5.Main Products
6.Package and Shipping
1.FedEX / DHL / UPS / TNT for samples,Door to door service;
2.By sea for batch goods;
3.Customs specifying freight forwarders or negotiable shipping methods;
4.Delivery Time:20-25 Days for samples;30-35 Days for batch goods;
5.Payment Terms:T/T,L/C at sight,D/P etc.
7.FAQ
Q1. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry.
If you are urgent to get the price, please send the message on and or call us directly.
Q2. How can I get a sample to check your quality?
After price confirmed, you can requiry for samples to check quality.
If you need the samples, we will charge for the sample cost.
But the sample cost can be refundable when your quantity of first order is above the MOQ
Q3. Can you do OEM for us?
Yes, the product packing can be designed as you want.
Q4. How about MOQ?
1 pcs for carton box.
Q5. What is your main market?
Eastern Europe, Southeast Asia, South America.
Please feel free to contact us if you have any question.
US $20-40 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
###
Samples: |
US$ 100/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Model | DMW421 | DMW422 | DMW423 | |
Voltage | V | 24 | ||
No load speed | rpm | 5000 | 5000 | 5000 |
Rated torque | Nm | 0.063 | 0.094 | 0.125 |
Rated Speed | rpm | 4000 | 4000 | 4000 |
Rated Current | A | 1.7 | 2.5 | 3.5 |
Torque(max) | Nm | 0.19 | 0.27 | 0.38 |
Back-EMF constant | V/Krpm | 3.13 | 3.13 | 3.15 |
Torque Constant | Nm/A | 0.039 | 0.04 | 0.04 |
Resistance | ohm | 1.5 | 0.53 | 0.74 |
Weight | Kg | 0.3 | 0.4 | 0.5 |
Length | mm | 41 | 51 | 6 |
###
Model | Rated Voltage | No load speed |
Rated torque | Rated Speed | Rated Current |
Rated power |
L |
VDC | RPM | Nm | rpm | A | W | mm | |
DMW701 | 48 | 3500 | 0.5 | 3000 | 4.3 | 157 | 86 |
DMW702 | 48 | 3500 | 1 | 3000 | 8.7 | 314 | 116 |
DMW703 | 48 | 3500 | 1.5 | 3000 | 12.9 | 471 | 136 |
###
Model | DMW801 | DMW802 | DMW803 | |
Voltage | V | 24 | ||
No load speed | rpm | 4200 | 4200 | 4200 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 5.2 | 10.5 | 15 |
Rated power | W | 79 | 157 | 236 |
Back-EMF constant | V/Krpm | 9 | 9.2 | 9.5 |
Torque Constant | Nm/A | 0.06 | 0.052 | 0.05 |
Resistance | ohm | 0.5 | 0.43 | 0.35 |
Weight | Kg | 1.6 | 2.2 | 3 |
Length | mm | 75 | 95 | 115 |
###
Model | DMW861 | DMW862 | DMW863 | |
Voltage | V | 48 | ||
No load speed | rpm | 3500 | 3500 | 3400 |
Rated torque | Nm | 1.0 | 1.8 | 2.5 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 8.6 | 14.8 | 20 |
Torque(max) | Nm | 3.0 | 5.4 | 7.5 |
Back-EMF constant | V/Krpm | 9.8 | 9.8 | 10 |
Torque Constant | Nm/A | 0.13 | 0.13 | 0.14 |
Resistance | ohm | 0.32 | 0.15 | 0.1 |
Weight | Kg | 2.2 | 3.2 | 4.2 |
Length | mm | 80 | 105 | 130 |
###
Model | DMW601 | DMW602 | DMW603 | |
Voltage | V | 36 | ||
No load speed | rpm | 4100 | 4100 | 4100 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 3 | 6 | 9 |
Torque(max) | Nm | 0.75 | 1.5 | 2 |
Back-EMF constant | V/Krpm | 6.2 | 6.5 | 6.5 |
Torque Constant | Nm/A | 0.043 | 0.045 | 0.041 |
Resistance | ohm | 0.59 | 0.26 | 0.2 |
Weight | Kg | 0.9 | 1.2 | 1.6 |
Length | mm | 78 | 99 | 120 |
###
Model | DMW571 | DMW572 | DMW573 | DMW574 | ||
Voltage | V | 36 | ||||
No load speed | rpm | 5200 | 5200 | 5300 | 5400 | |
Rated torque | Nm | 0.11 | 0.22 | 0.32 | 0.42 | |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 | |
Rated Current | A | 1.8 | 3.2 | 4.7 | 6.5 | |
Torque(max) | Nm | 0.3 | 0.5 | 0.8 | 1.2 | |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 | |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 | |
Resistance | ohm | 1.7 | 0.75 | 0.5 | 0.39 | |
Weight | Kg | 0.45 | 0.8 | 1.1 | 1.4 | |
Length | mm | 55 | 75 | 95 | 115 |
###
Model | DMW571 | DMW572 | DMW573 | DMW574 | |
Voltage | V | 36 | |||
No load speed | rpm | 5200 | 5200 | 5200 | 5200 |
Rated torque | Nm | 0.14 | 0.28 | 0.43 | 0.49 |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 |
Rated Current | A | 2.2 | 4.5 | 6.8 | 7.9 |
Torque(max) | Nm | 0.4 | 0.6 | 0.9 | 1.5 |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 |
Resistance | ohm | 2 | 0.9 | 0.7 | 0.5 |
Weight | Kg | 0.5 | 0.9 | 1.3 | 1.8 |
Length | mm | 55 | 75 | 95 | 115 |
US $20-40 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
###
Samples: |
US$ 100/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Model | DMW421 | DMW422 | DMW423 | |
Voltage | V | 24 | ||
No load speed | rpm | 5000 | 5000 | 5000 |
Rated torque | Nm | 0.063 | 0.094 | 0.125 |
Rated Speed | rpm | 4000 | 4000 | 4000 |
Rated Current | A | 1.7 | 2.5 | 3.5 |
Torque(max) | Nm | 0.19 | 0.27 | 0.38 |
Back-EMF constant | V/Krpm | 3.13 | 3.13 | 3.15 |
Torque Constant | Nm/A | 0.039 | 0.04 | 0.04 |
Resistance | ohm | 1.5 | 0.53 | 0.74 |
Weight | Kg | 0.3 | 0.4 | 0.5 |
Length | mm | 41 | 51 | 6 |
###
Model | Rated Voltage | No load speed |
Rated torque | Rated Speed | Rated Current |
Rated power |
L |
VDC | RPM | Nm | rpm | A | W | mm | |
DMW701 | 48 | 3500 | 0.5 | 3000 | 4.3 | 157 | 86 |
DMW702 | 48 | 3500 | 1 | 3000 | 8.7 | 314 | 116 |
DMW703 | 48 | 3500 | 1.5 | 3000 | 12.9 | 471 | 136 |
###
Model | DMW801 | DMW802 | DMW803 | |
Voltage | V | 24 | ||
No load speed | rpm | 4200 | 4200 | 4200 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 5.2 | 10.5 | 15 |
Rated power | W | 79 | 157 | 236 |
Back-EMF constant | V/Krpm | 9 | 9.2 | 9.5 |
Torque Constant | Nm/A | 0.06 | 0.052 | 0.05 |
Resistance | ohm | 0.5 | 0.43 | 0.35 |
Weight | Kg | 1.6 | 2.2 | 3 |
Length | mm | 75 | 95 | 115 |
###
Model | DMW861 | DMW862 | DMW863 | |
Voltage | V | 48 | ||
No load speed | rpm | 3500 | 3500 | 3400 |
Rated torque | Nm | 1.0 | 1.8 | 2.5 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 8.6 | 14.8 | 20 |
Torque(max) | Nm | 3.0 | 5.4 | 7.5 |
Back-EMF constant | V/Krpm | 9.8 | 9.8 | 10 |
Torque Constant | Nm/A | 0.13 | 0.13 | 0.14 |
Resistance | ohm | 0.32 | 0.15 | 0.1 |
Weight | Kg | 2.2 | 3.2 | 4.2 |
Length | mm | 80 | 105 | 130 |
###
Model | DMW601 | DMW602 | DMW603 | |
Voltage | V | 36 | ||
No load speed | rpm | 4100 | 4100 | 4100 |
Rated torque | Nm | 0.25 | 0.5 | 0.75 |
Rated Speed | rpm | 3000 | 3000 | 3000 |
Rated Current | A | 3 | 6 | 9 |
Torque(max) | Nm | 0.75 | 1.5 | 2 |
Back-EMF constant | V/Krpm | 6.2 | 6.5 | 6.5 |
Torque Constant | Nm/A | 0.043 | 0.045 | 0.041 |
Resistance | ohm | 0.59 | 0.26 | 0.2 |
Weight | Kg | 0.9 | 1.2 | 1.6 |
Length | mm | 78 | 99 | 120 |
###
Model | DMW571 | DMW572 | DMW573 | DMW574 | ||
Voltage | V | 36 | ||||
No load speed | rpm | 5200 | 5200 | 5300 | 5400 | |
Rated torque | Nm | 0.11 | 0.22 | 0.32 | 0.42 | |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 | |
Rated Current | A | 1.8 | 3.2 | 4.7 | 6.5 | |
Torque(max) | Nm | 0.3 | 0.5 | 0.8 | 1.2 | |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 | |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 | |
Resistance | ohm | 1.7 | 0.75 | 0.5 | 0.39 | |
Weight | Kg | 0.45 | 0.8 | 1.1 | 1.4 | |
Length | mm | 55 | 75 | 95 | 115 |
###
Model | DMW571 | DMW572 | DMW573 | DMW574 | |
Voltage | V | 36 | |||
No load speed | rpm | 5200 | 5200 | 5200 | 5200 |
Rated torque | Nm | 0.14 | 0.28 | 0.43 | 0.49 |
Rated Speed | rpm | 4000 | 4000 | 4000 | 4000 |
Rated Current | A | 2.2 | 4.5 | 6.8 | 7.9 |
Torque(max) | Nm | 0.4 | 0.6 | 0.9 | 1.5 |
Back-EMF constant | V/Krpm | 4.5 | 4.8 | 4.83 | 4.9 |
Torque Constant | Nm/A | 0.072 | 0.078 | 0.08 | 0.09 |
Resistance | ohm | 2 | 0.9 | 0.7 | 0.5 |
Weight | Kg | 0.5 | 0.9 | 1.3 | 1.8 |
Length | mm | 55 | 75 | 95 | 115 |
The Basics of a Gear Motor
The basic mechanism behind the gear motor is the principle of conservation of angular momentum. The smaller the gear, the more RPM it covers and the larger the gear, the more torque it produces. The ratio of angular velocity of two gears is called the gear ratio. Moreover, the same principle applies to multiple gears. This means that the direction of rotation of each adjacent gear is always the opposite of the one it is attached to.
Induction worm gear motor
If you’re looking for an electric motor that can deliver high torque, an Induction worm gear motor might be the right choice. This type of motor utilizes a worm gear attached to the motor to rotate a main gear. Because this type of motor is more efficient than other types of motors, it can be used in applications requiring massive reduction ratios, as it is able to provide more torque at a lower speed.
The worm gear motor is designed with a spiral shaft that is set into splines in another gear. The speed at which the worm gear rotates is dependent on the torque produced by the main gear. Induction worm gear motors are best suited for use in low-voltage applications such as electric cars, renewable energy systems, and industrial equipment. They come with a wide range of power-supply options, including twelve-volt, 24-volt, and 36-volt AC power supplies.
These types of motors can be used in many industrial settings, including elevators, airport equipment, food packaging facilities, and more. They also produce less noise than other types of motors, which makes them a popular choice for manufacturers with limited space. The efficiency of worm gearmotors makes them an excellent choice for applications where noise is an issue. Induction worm gear motors can be compact and extremely high-torque.
While the Induction worm gear motor is most widely used in industrial applications, there are other kinds of gearmotors available. Some types are more efficient than others, and some are more expensive than others. For your application, choosing the correct motor and gearbox combination is crucial to achieving the desired result. You’ll find that the Induction worm gear motor is an excellent choice for many applications. The benefits of an Induction worm gear motor can’t be overstated.
The DC gear motor is an excellent choice for high-end industrial applications. This type of gearmotor is smaller and lighter than a standard AC motor and can deliver up to 200 watts of torque. A gear ratio of three to two can be found in these motors, which makes them ideal for a wide range of applications. A high-quality DC gear motor is a great choice for many industrial applications, as they can be highly efficient and provide a high level of reliability.
Electric gear motors are a versatile and widely used type of electric motor. Nevertheless, there are some applications that don’t benefit from them, such as applications with high shaft speed and low torque. Applications such as fan motors, pump and scanning machines are examples of such high-speed and high-torque demands. The most important consideration when choosing a gearmotor is its efficiency. Choosing the right size will ensure the motor runs efficiently at peak efficiency and will last for years.
Parallel shaft helical gear motor
The FC series parallel shaft helical gearmotor is a compact, lightweight, and high-performance unit that utilizes a parallel shaft structure. Its compact design is complemented by high transmission efficiency and high carrying capacity. The motor’s material is 20CrMnTi alloy steel. The unit comes with either a flanged input or bolt-on feet for installation. Its low noise and compact design make it an ideal choice for a variety of applications.
The helical gears are usually arranged in two rows of one another. Each row contains one or more rows of teeth. The parallel row has the teeth in a helical pattern, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a point contact design and do not overlap. They can be either parallel or crossed. The helical gear motors can have any number of helical pairs, each with a different pitch circle diameter.
The benefits of the Parallel Shaft Helical Gearbox include high temperature and pressure handling. It is produced by skilled professionals using cutting-edge technology, and is widely recognized for its high performance. It is available in a range of technical specifications and is custom-made to suit individual requirements. These gearboxes are durable and low-noise and feature high reliability. You can expect to save up to 40% of your energy by using them.
The parallel shaft helical gear motors are designed to reduce the speed of a rotating part. The nodular cast iron housing helps make the unit robust in difficult environments, while the precision-machined gears provide quiet, vibration-free operation. These motors are available in double reduction, triple reduction, and quadruple reduction. The capacity ranges from 0.12 kW to 45 kW. You can choose from a wide variety of capacities, depending on the size of your gearing needs.
The SEW-EURODRIVE parallel shaft helical gearmotor is a convenient solution for space-constrained applications. The machine’s modular design allows for easy mounting and a wide range of ambient temperatures. They are ideal for a variety of mechanical applications, including conveyors, augers, and more. If you want a small footprint, the SEW-EURODRIVE parallel shaft helical gear motor is the best solution for you.
The parallel shaft helical gears are advantageous for both high and low speed applications. Parallel helical gears are also suitable for low speed and low duty applications. A good example of a cross-helix gear is the oil pump of an internal combustion engine. Both types of helical gears are highly reliable and offer vibration-free operation. They are more costly than conventional gear motors, but offer more durability and efficiency.
Helical gear unit
This helical gear unit is designed to operate under a variety of demanding conditions and can be used in a wide range of applications. Designed for long life and high torque density, this gear unit is available in a variety of torques and gear ratios. Its design and construction make it compatible with a wide range of critical mechanical systems. Common applications include conveyors, material handling, steel mills, and paper mills.
Designed for high-performance applications, the Heidrive helical gear unit provides superior performance and value. Its innovative design allows it to function well under a wide range of operating conditions and is highly resistant to damage. These gear motors can be easily combined with a helical gear unit. Their combined power output is 100 Nm, and they have a high efficiency of up to 90%. For more information about the helical gear motor, contact a Heidrive representative.
A helical gear unit can be classified by its reference section in the standard plane or the turning plane. Its center gap is the same as that of a spur gear, and its number of teeth is the same. In addition to this, the helical gear has a low axial thrust, which is another important characteristic. The helical gear unit is more efficient at transferring torque than a spur gear, and it is quieter, too.
These units are designed to handle large loads. Whether you are using them for conveyors, augers, or for any other application that involves high-speed motion, a helical gear unit will deliver maximum performance. A helical gear unit from Flender can handle 400,000 tasks with a high degree of reliability. Its high efficiency and high resistance to load ensures high plant availability. These gear motors are available in a variety of sizes, from single-speed to multi-speed.
PEC geared motors benefit from decades of design experience and high quality materials. They are robust, quiet, and offer excellent performance. They are available in multiple configurations and are dimensionally interchangeable with other major brands. The gear motors are manufactured as modular kits to minimize inventory. They can be fitted with additional components, such as backstops and fans. This makes it easy to customize your gear motors and save money while reducing costs.
Another type of helical gears is the double helical gear. The double helical gear unit has two helical faces with a gap between them. They are better for enclosed gear systems as they provide greater tooth overlap and smoother performance. Compared to double helical gears, they are smaller and more flexible than the Herringbone type. So, if you’re looking for a gear motor, a helical gear unit may be perfect for you.
editor by czh 2022-11-27