Product Description
Specification | ||
1520W Oilless Motor 100% Copper Wire | ||
Motor Size:26.5×19.5cm Side Diameter:13.8cm | ||
Edge Distance: 21.5×8.5cm | ||
220V 50HZ/60HZ | ||
Motor Thickness: | 70mm | |
Silicon Steel Sheet | 140pcs | |
Cylinder Diameter | 63.70mm | |
Adaptive Capacity | 30uf | |
Net Weight | 9.6kgs | |
Air Delivery | 120L/min | |
QTY/CTN | 2pcs/ctn | |
Meas: | 36x34x29.5cm=0.036cbm |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Air Cooling |
Cylinder Arrangement: | Duplex Arrangement |
Cylinder Position: | Vertical |
Structure Type: | Open Type |
Compress Level: | Double-Stage |
Customization: |
Available
|
|
---|
What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?
In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:
- Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
- Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
- Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
- Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
- Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
- Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.
AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.
In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.
Can you explain the difference between single-phase and three-phase AC motors?
In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:
- Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
- Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
- Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
- Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
- Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
- Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.
It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.
When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.
What is an AC motor, and how does it differ from a DC motor?
An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:
AC Motor:
An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.
The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.
DC Motor:
A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.
In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.
Differences:
The main differences between AC motors and DC motors are as follows:
- Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
- Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
- Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
- Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
- Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.
In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.
editor by CX 2024-05-14
China Good quality Electric AC Motor Air Compressor Ye3-160m-4 Power 11kw Customizable Voltage Three-Phase Induction Motor vacuum pump oil near me
Product Description
Electric AC motor Air compressor YE3-160M-4 power 11kw customizable voltage three-phase induction motor
Factory advantage
1.30 years of history
2. Competitive prices
3. Quality Assurance
Four. Fast Delivery Time: General model about 15-20 days, special model about 30 days
Each process is 100% tested and 100% selective in raw materials
5. Be Efficient
6. Low Noise
7. Live Long
8. Save Energy
9. Slight vibration
10. Professional service/Patience
11. Warranty period: 12 months from the date of delivery
Main Markets: South , Europe, Middle East, Southest Asia, Africa, etc
Product description
Canglong Motors YE3 motor features:
Frame material: cast iron
Standard Color: Gentian Blue (RAL 5571)
Standard frequency: 50 Hz (available on other frequencies)
Available in 2, 4, 6,8 pole for 0.21kW and above
Efficiency level: IE3(50Hz) according to IEC 60034-30.
Installation: B 3, B 5, B35, etc. , in accordance with IEC 60034-7 standard
Protection Level: IP55(IEC 60034-5)
Insulation: Class F (155 degrees Celsius)
Cooling mode: IC 411, IEC 60034-6 standard, self-fan, independent cooling fan
Working Height: not exceeding 1000m above sea level (IEC 60034-1)
If there is no other request in the order or agreement, terminal box standard position is at the right side of the frame; data above may be changed without prior notice.
WHY CHOOSE US ?
1.We are professional electric motor manufacture for 20 years since 1996.
2.We have best quality materials to make our electric motors best performance.
3.Our products are 100% brand new , 100% cooper wire , 100% output.
4.We have advanced and automated machines such as high speed punching machines, swing punching machines, machines to form the rotors ,stators etc. in 1 piece, automated packing machines which can produce nice appearance and good performance motors while decrease the labor cost and mechanical loss .
5.We have professional financial department who are good at calculating and controlling the cost and capital operation which could make most favorable prices for our customers.
6.We have a strong R&D team, which can develop and produce products according to drawings or samples provided by customers.
7.We have our own pump and motor production line, raw materials processing, factory direct sales, inexpensive.
8.We are only 200 kilometers away from HangZhou port, which is very convenient for export.
1.BFlange | 9.Key | 17.Rear endshield | 25.Terminal box cover | 33.Brasslug |
2.B4Flange | 10.Rotor | 18.Fan | 26.Screw | |
3.Front endshield | 11.Stator | 19.Fan cowl | 27.Earth mark | |
4.Shaft cover | 12.Pedestal | 20.FancowlScrew | 28.Brass washer | |
5.Spring washer | 13.Pedestal bolt | 21.Fan clamp | 29.Deductioncap | |
6.Vring Oil seal | 14.Nameplate | 22.Cable gland | 30.Brassnet | |
7.Bolt | 15.Main frame | 23.Terminal box base | 31.Termiani board | |
8.Bearing | 16.Wave washer | 24.Gasket | 32.Leather washer |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial, Universal, Power Tools |
---|---|
Operating Speed: | Low Speed |
Number of Stator: | Three-Phase |
Species: | Ye3/Ie3 |
Rotor Structure: | Squirrel-Cage |
Casing Protection: | Closed Type |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can AC motors be used in both residential and commercial settings?
Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.
In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.
In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:
- Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
- HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
- Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
- Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
- Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
- Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.
The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.
Are there energy-saving technologies or features available in modern AC motors?
Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:
- High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
- Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
- Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
- Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
- Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
- Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
- Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.
By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.
What are the key advantages of using AC motors in industrial applications?
AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:
- Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
- Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
- High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
- Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
- Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
- Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
- Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.
These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.
editor by CX 2024-05-09
in Beira Mozambique sales price shop near me near me shop factory supplier Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor manufacturer best Cost Custom Cheap wholesaler
we are self-assured to offer our buyers flexible and diversified providers. EPG was awarded with “renowned solution of Zhejiang Province” and “popular brand name of Zhejiang Province”. Our company pays particular interest to customers’ requirements, listening to the specific demands of each consumer and guaranteeing complete pleasure.
Three Section Asynchronous AC Induction Electric Equipment EPT Fan EPTlower Vacuum Air Compressor Water Pump Common Market EPT Motor
———————————————————————————————
Apps: Can be applied in the EPTs exactly where constant responsibility is necessary, common purposes like
- Pumps
- Followers
- Compressors
- Lifting equipment
- Generation industry
EPT Description
- Body measurements: sixty three to 355M/L
- Rated output: .12 to 400kW
- Voltage: 380V
- Frequency: 50Hz or 60Hz
- Poles: 2, 4, 6, eight,10
- Effectiveness ranges: IE1,IE2,IE3,IE4
- Duty Cycle: S1
- Enclosure: IC411 – TEFC
- Insulation class: F
- Diploma of security: IP55/56/sixty five/66
- Support Aspect: 1.
- Regreasing method: Frame 250 and previously mentioned
Attributes
EPTeautiful profile, large effectiveness and energy saving, course F insulation, IP55 defense grade, reduced noise, small vibration, trustworthy operating.
Optional Functions
Electrical:
Insulation Course:H Design H
Thermal Safety: PTC Thermistor, Thermostat or PT100
Mechanical:
Other individuals mountings
Security Diploma:IP56, IP65, IP66
Sealing:Lip seal, Oil seal
Space Heater, Double shaft ends
Drain Gap
Mounting
Standard mounting kind and appropriate body size are given in following desk(with quot radic quot)
Frame | standard type | derived kind | |||||||||||||
EPT3 | EPT5 | EPT35 | V1 | V3 | V5 | V6 | EPT6 | EPT7 | EPT8 | V15 | V36 | EPT14 | EPT34 | V18 | |
sixty three~112 | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic |
132~a hundred and sixty | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | radic | – | – | – |
a hundred and eighty~280 | radic | radic | radic | radic | – | – | – | – | – | – | – | – | – | – | – |
315~355 | radic | – | radic | radic | – | – | – | – | – | – | – | – | – | – | – |
If there is no other ask for in the orEPTor agreement, terminal box stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd situation is at the rigEPT side of the body information previously mentioned might be changed with out prior notice.
Show Room
High quality Support
EPT Management
EPT Motor Creation Workshop and Movement Chart
Certificates and far more Firm information make sure you go to quotAEPTOUT US quot
—————————————————————————————————————————
Welcome to speak to us immediately…
WANNAN MOTOR EPT Remedies