Tag Archives: electric gearbox

China Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor vacuum pump electric

Product Description

 

Product Parameters

Model No.: KM-12FN30-298-571

Size details:
Motor Diameter: φ12mm
Gear box length : 10mm
Shaft length: customization
Specifications:
Rated voltage: DC 2.5V
Direction of rotation: CW/CCW 
No load speed: 100rpm
No load current: 0.04A 
Rated torque: 540g.cm 
Rated speed: 80rpm

All technical data can custom made for different application.

Customized items:
DC motor, gearbox motor, vibration motor, automotive motor.
Accessories offered like encoder, gear,worm, wire, connector.
Ball bearing or Oil-impregnated bearing.
Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
Metal end cap or plastic end cap.
 Precious metal brush/ carbon brush.
Technical data.

Detailed Photos

Application

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
 

2.What’s the lead time for samples or mass production?

Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
 

3.Could you mind sending the quotation for this motor?

For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
 

4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?

We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5.Are your motors certificated with UL, CB Tüv, CE?

All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor   vacuum pump electricChina Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor   vacuum pump electric
editor by CX 2024-05-14

China wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale vacuum pump distributors

Product Description

3 phase ac asynchronous marine gearbox electric motor price for wholesale

Application of electric motor

Electric motors are used in a wide variety of applications, including:

  • Home appliances: Electric motors are used in home appliances such as refrigerators, washing machines, and vacuum cleaners.
  • Power tools: Electric motors are used in power tools such as drills, saws, and sanders.
  • Machine tools: Electric motors are used in machine tools such as lathes, milling machines, and grinders.
  • Transportation: Electric motors are used in transportation vehicles such as cars, buses, and trains.
  • Industry: Electric motors are used in industry for a variety of applications such as conveyor belts, hoists, and elevators.
  • Medical devices: Electric motors are used in medical devices such as X-ray machines, MRI machines, and pacemakers.
  • Other: Electric motors are also used in a variety of other applications such as wind turbines, robotics, and telecommunications.

Here are some specific applications of electric motors:

  • Wind turbines: Electric motors are used in wind turbines to convert the kinetic energy of the wind into electrical energy.
  • Robotics: Electric motors are used in robotics to provide motion and control.
  • Electric vehicles: Electric motors are used in electric vehicles to power the wheels.
  • Machine tools: Electric motors are used in machine tools to power the cutting tools.
  • Conveyor belts: Electric motors are used in conveyor belts to move materials from 1 place to another.
  • Elevators: Electric motors are used in elevators to raise and lower people and objects.
  • Air conditioners: Electric motors are used in air conditioners to move the refrigerant through the system.
  • Refrigerators: Electric motors are used in refrigerators to move the refrigerant through the system and to power the compressor.
  • Vacuum cleaners: Electric motors are used in vacuum cleaners to power the brush roll and the fan.
  • Drills: Electric motors are used in drills to spin the drill bit.
  • Saws: Electric motors are used in saws to spin the saw blade.
  • Sanders: Electric motors are used in sanders to spin the sanding disk.
  • Other: Electric motors are used in a variety of other applications, such as toys, appliances, and medical devices.

Electric motors are a versatile and reliable component that can be used in a wide variety of applications. They offer a number of advantages, including:

  • Efficiency: Electric motors are very efficient, converting up to 90% of the electrical energy they receive into mechanical energy.
  • Versatility: Electric motors can be used in a wide variety of applications.
  • Reliable: Electric motors are very reliable and have a long lifespan.
  • Cost-effective: Electric motors are a cost-effective way to power a variety of devices.

Overall, electric motors are a valuable component that can be used in a wide variety of applications. They offer a number of advantages, including efficiency, versatility, reliability, and cost-effectiveness.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode:
Function: Control, Driving
Casing Protection:
Number of Poles: 2
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale   vacuum pump distributorsChina wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale   vacuum pump distributors
editor by CX 2024-04-23

China wholesaler NEMA17 (42mm) Planetary DC Gear Stepper Motor with Planetary Gearbox Reduction Ratio 5.18: 1 vacuum pump electric

Product Description

nema17 Planetary Gearbox Stepping Motor price on hot sale
General Specificati

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange)  ≤80N
Max.Shaft Axial Load ≤30N
Radial Play of Shaft (near to Flange) ≤0.06mm
Axial Play of Shaft  ≤0.3mm
Backlash at No-load  1.5°

Electrical Specification:  

Model No. Step Angle Motor Length Current
/Phase
Resistance
/Phase
Inductance
/Phase
Holding Torque # of Leads Detent Torque Rotor Inertia Mass
  ( °) (L)mm A Ω mH kg.cm No. g.cm g.cm Kg
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS34-0406 1.8 34 0.4 24 15 1.6 6 120 34 0.22
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS40-1206 1.8 40 1.2 3 2.7 2.9 6 150 54 0.28
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35
JK42HS48-1206 1.8 48 1.2 3.3 2.8 3.17 6 260 68 0.35
JK42HS60-1704 1.8 60 1.7 3 6.2 7.3 4 280 102 0.5
JK42HS60-1206 1.8 60 1.2 6 7 5.6 6 280 102 0.5

42HS Planetary Gearbox Specifications

Reduction ratio 3.71 5.18 13.76 19.2 26.8 51 71 99.5 139
Number of gear trains 1 2 3
Length(L2)   mm 27.3 35 42.7
Max.rated torque kg.cm 20 30 40
Short time permissible torque kg.cm 40 60 80
Weight   g 350 450 550

Products of special request can be made according to the customer request !

company information:

our certification:

Our Company offers 3 major series of products:Hybrid Stepper motors, Brushless Dc motor and Dc Brush motor.
We are always continues develop new type models.If you need other kinds of parts, please don’t hesitate to contact us.

Amy Gao

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Run
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 21.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China wholesaler NEMA17 (42mm) Planetary DC Gear Stepper Motor with Planetary Gearbox Reduction Ratio 5.18: 1   vacuum pump electricChina wholesaler NEMA17 (42mm) Planetary DC Gear Stepper Motor with Planetary Gearbox Reduction Ratio 5.18: 1   vacuum pump electric
editor by CX 2024-03-28

China wholesaler 72mm DC Planetary Gear Motor with Gearbox Electric Drum Motor vacuum pump design

Product Description

Product Pictures


Product Parameter

Brush Motor Technical Data:

Model

Voltage

Power

No-Load Current

No-Load Speed

Rated Current

Rated Speed

Rated Torque

Z72DPN1260-30S

12V

60W

2.0A

3500rpm

7.2A

3000rpm

0.191N.m

Z72DPN2490-30S

24V

90W

1.5A

3400rpm

5.5A

3000rpm

0.287N.m

Z72DPN24120-30S

24V

120W

2.0A

3500rpm

7.2A

3000rpm

0.382N.m

Brush DC Planetary Gear Motor Technical Data-72DPN2490-30S:

Ratio 3.65 5.36 6.55 8.63 14 19 25 28
Out-put Speed(rpm) 822 560 458 348 222 159 122 107
Allowable Torque(N.m) 0.94 1.38 1.69 2.23 3.25 4.41 5.8 6.5
Reduction Stage 1 1 1 1 2 2 2 2
                 
Ratio 34 45 58 67 81 91 103 119
Out-put Speed(rpm) 89 67 52 45 37 33 29 25
Allowable Torque(N.m) 7.9 10.44 13.46 14.01 16.94 19.03 21.54 24.89
Reduction Stage 2 2 2 3 3 3 3 3
                 
Ratio 128 146 165 192 132 302 393  
Out-put Speed(rpm) 24 21 18 16 13 9.9 7.6  
Allowable Torque(N.m) 26.77 30.54 34.51 40.16 48.52 63.37 82.19  
Reduction Stage 3 3 3 3 3 3 3  

Product Advantages
Planetary gear reducer is a new generation of practical products independently developed by our company ,which has the following main features:

*Low noise                *Hight torque

*Low Backlash           *High stability

*High efficiency          *High input speed


Product detailsProduct Application
Related Products:
Our products have the features of small size,light weight,high bearing capacity ,long service life,smooth
operation ,low noise,large output torque,high speed ratio,high efficiency and safe performance.
It has the characteristics of power split and multi-tooth meshing.

We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors,
Brushless DC Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc
.

You can email us to recommend needed motors per your specification.

Company profile


LunYee Culture:

L-Loyalty to Customers

U-Unity of working together

N-New things introduced by us in our industry

Y-Yield returns and enjoy together

E- Easy to buy

E- Easy to use

A satisfying one-stop service comes from our continuous innovation team and our rigorously-inspected sub-contracters!
Our products are widely applied to machine tools, industrial robot,textile machine,packing machine,food machine, medical appliance,CNC system and air condition and so on!

FAQ:
Q1. Can I have a sample order?

A: Yes, we can sell a sample, sit is pleased to receive a sample order to test and check the quality of products.

Q2. How long is the warranty?
A: The products come with a one-year warranty.

Q3. Can our logo be printed on this product?
A: Yes, please inform us formally before production and confirm the design firstly based on our sample.

Application: Universal
Operating Speed: High Speed
Function: Control, Driving
Casing Protection: Closed Type
Structure and Working Principle: Brush
Brand: Lunyee
Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China wholesaler 72mm DC Planetary Gear Motor with Gearbox Electric Drum Motor   vacuum pump design		China wholesaler 72mm DC Planetary Gear Motor with Gearbox Electric Drum Motor   vacuum pump design
editor by CX 2023-12-04

China manufacturer High Torque DC Planetary Gearbox Motor Gear Motor with Aluminum Bracket for Electric String Trimmer with Hot selling

Product Description

Quiet stable and reliable for long life operation

Motor type 63ZYT-125-24
Protection grade IP50
Duty cycle S1 (100%)
Rated voltage 24 V
Rated current 4.9  A
Input power 117.6 W
No-load current 0.4 A
Rated torque 0.27 Nm
Rated speed 3300 ±10% rpm
Rated output power 93.3 W
Friction torque 2 Ncm
efficiency 80%
Maximum torque 1.3 ±10% Nm
Maximum current 23 A
No-load speed 3650 ±10% rpm
Maximum power 245 W
Maximum shell temperature 85 ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection grade IP65
Reduction ratio 710.5:1
Rated torque 120 Nm
Maximum torque 180 Nm
Ambient temperature -20 to 85 ºC
Grease Smart Smart top 28
Grease temperature range -20 to 160 ºC

Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Certification: ISO9001, CCC, CE
Brand: Jintian
Power: 117.6W
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China manufacturer High Torque DC Planetary Gearbox Motor Gear Motor with Aluminum Bracket for Electric String Trimmer   with Hot selling	China manufacturer High Torque DC Planetary Gearbox Motor Gear Motor with Aluminum Bracket for Electric String Trimmer   with Hot selling
editor by CX 2023-11-09

China Hot selling DC Gearbox Electric Permant Magnet Planetary Gear Motor with High Torque for Medical Equipment brushless motor

Product Description

16ZYJ DC Gear Motor
Basic Info
Item Data
Tem Rise 40K
Working Tem (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 45g

 

Specification
PN Rated Voltage Initial Speed Ratio Power Noload Speed Noload Current Rated Speed Rated Current Rated Torque Stall Torque Stall Current
V DC rpm 1:xxx W rpm mA rpm mA Kg.cm Kg.cm mA
16ZYJ-75A 3 7500 100 2.2 75 80 60 150 1.8 3 600
16ZYJ-100A 6 15000 150 2.2 100 80 130 160 2 3.5 600
16ZYJ-500A 9 15000 30 2.2 500 80 400 200 1 2 600

Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

The AC/DC gear motors are based upon to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.

These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.

Please kindly contact us to get a catalogue.

Shipping&Payment

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way 
can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, 
within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL,TNT,UPS,EMS for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                                                                                       
15-30 working days by vessel

 

Our promise to our Customers:
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours.
4.  Standard Lead time is within 4 weeks.  Respond to special product development within 15 weeks.
5.  Flexible delivery methods:  By air, sea and express carrier using the customer’s forwarder.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China Hot selling DC Gearbox Electric Permant Magnet Planetary Gear Motor with High Torque for Medical Equipment   brushless motor	China Hot selling DC Gearbox Electric Permant Magnet Planetary Gear Motor with High Torque for Medical Equipment   brushless motor
editor by CX 2023-04-20

China 3V electric gearbox motor for Diagnostic equipment dc motor

Product Description

3v electric gearbox motor for Diagnostic tools

Major Functions
1.OEM&solODM 12mm Planetary reducer additionally 1230CA and 1220CA motor
2.Modest dimensions dc gear motor with low pace and huge torque
three.12mm equipment motor supply .2Nm torque and more reputable
4.Suited to little diameter, reduced noise and large torque software
5.DC Gear motors can match encoder, 3ppr
6.Reduction ratio:4,16,64,256,1571,4096

Motor complex data :

Motor model no. Rated voltage No-load velocity No-load recent Rated velocity Rated torque Rated present Output energy Stall torque Stall present
VDC r&solmin mA r&solmin g.cm mA W g.cm A
TRF-1230CA-11140 6 12800 70 9000 six 260 .55 22 1.
TRF-1230CA-1580 three 12000 60 9000 5 280 .46 20 1.
TRF-1230CA-10180 3 10300 75 7700 2 280 .24 eight .five

 
Gear motor specialized info : GMP12-1230CA-11140-xxx

Reduction ratio 4 sixteen sixty four 256 1571 4096
Size mm sixteen 19 22 25 28 31
No-load speed rpm 3100 780 195 50 thirteen three.1
Rated velocity rpm 2250 560 a hundred and forty 35 ten 2.nine
Rated torque kg.cm .02 .07 .23 .8 2 2
Max.momentary tolerance torque kg.cm .07 .twenty five .eight three 6 6

Gear motor technical info : GMP12-1230CA-1580-xxx

Reduction ratio four 16 sixty four 256 1571 4096
Length mm 16 19 22 twenty five 28 31
No-load speed rpm 2750 690 170 forty two ten 2.eight
Rated velocity rpm 2300 570 one hundred forty 36 9 2.seven
Rated torque kg.cm .016 .06 .two .7 2 2
Max.momentary tolerance torque kg.cm .06 .22 .seventy seven 2.8 six six

Gear motor complex info : GMP12-1230CA-10180-xxx

Reduction ratio 4 16 64 256 1571 4096
Length mm sixteen 19 22 twenty five 28 31
No-load pace rpm 2500 630 one hundred sixty forty 10 two.5
Rated velocity rpm 1930 480 a hundred and twenty 30 7.five 2.one
Rated torque kg.cm .006 .571 .08 .28 .8 two
Max.momentary tolerance torque kg.cm .026 .09 .3 one.1 three 6

Item Application

Computerized doorway operators, automated vitality saving tub,electrical managed valve,oxygen equipment,optical gear, Automat cordless electricity tool,lights,and so on.
 

Other Purposes:
Enterprise Equipment: ATM, Copiers and Scanners, Forex Dealing with, Position of Sale, Printers, Vending Equipment.
Foodstuff and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Equipment, Meals Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Residence Entertainment and Gaming: Gaming Equipment, Video Online games, Optical Disk Drives, RC and Electrical power Toys.
Residence Systems: Property Air flow, Air Purifiers and Dehumidifiers, Selection Hoods, Washers and Dryers, Fridges, Dishwashers, Flooring Treatment, Whirlpool and Spa, Showers, Intelligent Metering, Espresso Equipment.
Garden and Backyard garden: Garden Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Individual Treatment: Hair Slicing, Hair Care, Massagers.
Power Instruments: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Digital camera and Optical: Online video, Cameras, Projectors.

Packing & Delivery
Packaging: one carton packing, one hundred parts per box.
Shipping time:
DHL: 3-5 doing work days &semi
UPS: 5-7 working times&semi
TNT: 5-7 working days&semi
FedEx: 7-9 working times&semi
EMS: twelve-fifteen working times&semi
By Sea: Relies upon on which place

Our Company
TT Motor &lparHK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective areas considering that 2000.
Our items are extensively utilised in leisure systems, vehicles, property and industrial appliances and instruments and numerous others. Our products are trusted and lengthy-long lasting, and backed by many years of encounter. We export ninety eight&percnt of our output worldwide. 
By leveraging our hard-received status for honesty, dependability and good quality, TT Motor aims to proceed as a pioneer in the income overseas by searching for worldwide companions. If your company is an finish-consumer of micro-motors, a distributor or an agent, remember to contact us. We look ahead to being CZPT to work jointly with you in the near potential.

FAQ
Q: How to buy&quest
A: ship us inquiry &rightarrow receive our quotation &rightarrow negotiate specifics &rightarrow confirm the sample &rightarrow sign deal&soldeposit &rightarrow mass manufacturing &rightarrow cargo completely ready &rightarrow balance&soldelivery &rightarrow further cooperation.
Q: How about Sample order&quest
A: Sample is offered for you. make sure you make contact with us for specifics. Our web site:ttmotor.en.created-in-china.com
Q: Which delivery way is avaliable&quest
A: DHL, UPS, FedEx, TNT, EMS, China Submit,Sea are available.The other delivery ways are also obtainable, please get in touch with us if you want ship by the other delivery way. 
Q: How lengthy is the supply&quest
A: Devliver time relies upon on the quantity you buy. generally it takes fifteen-25 working days.
Q: My deal has missing items. What can I do&quest
A: Remember to make contact with our assistance staff and we will validate your order with the deal contents.We apologize for any inconveniences. 
Q: How to confirm the payment&quest
A: We take payment by T&solT, PayPal, the other payment methods also could be acknowledged,Remember to contact us just before you pay out by the other payment ways. Also 30-fifty&percnt deposit is obtainable, the equilibrium income ought to be paid out just before delivery.


/ Piece
|
50 Pieces

(Min. Order)

###

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 21/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Motor model no. Rated voltage No-load speed No-load current Rated speed Rated torque Rated current Output power Stall torque Stall current
VDC r/min mA r/min g.cm mA W g.cm A
TRF-1230CA-11140 6 12800 70 9000 6 260 0.55 22 1.0
TRF-1230CA-1580 3 12000 60 9000 5 280 0.46 20 1.0
TRF-1230CA-10180 3 10300 75 7700 2 280 0.24 8 0.5

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 3100 780 195 50 13 3.1
Rated speed rpm 2250 560 140 35 10 2.9
Rated torque kg.cm 0.02 0.07 0.23 0.8 2 2
Max.momentary tolerance torque kg.cm 0.07 0.25 0.8 3 6 6

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 2750 690 170 42 10 2.8
Rated speed rpm 2300 570 140 36 9 2.7
Rated torque kg.cm 0.016 0.06 0.2 0.7 2 2
Max.momentary tolerance torque kg.cm 0.06 0.22 0.77 2.8 6 6

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 2500 630 160 40 10 2.5
Rated speed rpm 1930 480 120 30 7.5 2.1
Rated torque kg.cm 0.006 0.022 0.08 0.28 0.8 2
Max.momentary tolerance torque kg.cm 0.026 0.09 0.3 1.1 3 6

###

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.

/ Piece
|
50 Pieces

(Min. Order)

###

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 21/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Motor model no. Rated voltage No-load speed No-load current Rated speed Rated torque Rated current Output power Stall torque Stall current
VDC r/min mA r/min g.cm mA W g.cm A
TRF-1230CA-11140 6 12800 70 9000 6 260 0.55 22 1.0
TRF-1230CA-1580 3 12000 60 9000 5 280 0.46 20 1.0
TRF-1230CA-10180 3 10300 75 7700 2 280 0.24 8 0.5

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 3100 780 195 50 13 3.1
Rated speed rpm 2250 560 140 35 10 2.9
Rated torque kg.cm 0.02 0.07 0.23 0.8 2 2
Max.momentary tolerance torque kg.cm 0.07 0.25 0.8 3 6 6

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 2750 690 170 42 10 2.8
Rated speed rpm 2300 570 140 36 9 2.7
Rated torque kg.cm 0.016 0.06 0.2 0.7 2 2
Max.momentary tolerance torque kg.cm 0.06 0.22 0.77 2.8 6 6

###

Reduction ratio 4 16 64 256 1024 4096
Length mm 16 19 22 25 28 31
No-load speed rpm 2500 630 160 40 10 2.5
Rated speed rpm 1930 480 120 30 7.5 2.1
Rated torque kg.cm 0.006 0.022 0.08 0.28 0.8 2
Max.momentary tolerance torque kg.cm 0.026 0.09 0.3 1.1 3 6

###

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China 3V electric gearbox motor for Diagnostic equipment     dc motor	China 3V electric gearbox motor for Diagnostic equipment     dc motor
editor by CX 2023-04-07

China Good Quality Reduction Gearbox Bbq 12V Low Rpm DC Electric High Torque Micro Dc Motor for Camera with Hot selling

Guarantee: 3months-1year
Product Quantity: YX16FP
Utilization: BOAT, Vehicle, Electrical Bicycle, Admirer, Property Appliance, Beauty instrument, Sensible Property
Kind: Gear MOTOR
Torque: 5.0g.cm
Construction: Long lasting Magnet
Commutation: Brush
Shield Feature: Completely Enclosed
Pace(RPM): 6080r/min
Continuous Existing(A): .09(A)
Effectiveness: sixty five%
dimension: 16mm
stall torque: 5g.cm max
characteristic: dc planetary gear motor for stability surveillance Camera
Motor kind: Dc Brush Gear Motor
Fat: 90g
Rated torque: 5g.cm
Sounds: Minimal Sound Level
Packaging Specifics: Carton

specification

itemvalue
Applicable IndustriesTypical Application: Eyebrow pencil, Digital camera, CZPT care product, Automobile watering device, and and many others.
Place of OriginChina
ZheJiang
Brand NameYXPM
Model NumberYX16FP
Typesleeve
MaterialMetal
Product nameChina manufacturing unit substantial precision powdered metallic oil bearing cooper bushes
OEMOEM Solutions Supplied
CertificateISO9001:2015
MOQ3000pcs
MaterialStainless metal,Iron,Brass,Copper,Aluminum,Delicate Magnetic Alloy
Packingcarton
FeaturesHigh toughness, high precision
SampleAvailable
CoatingCustomer need or Common
Solution Design Organization Profile HangZhou YongXin Components CZPT Merchandise Co., Ltd. , 57J1880-450-LL JMC Substantial Torque 2 Phase Nema 23 Stepper Motor for 3D printer cnc router lazer washing machine launched at the finish of 2013,is located in No.2 shahu hengjie, HangZhou h2o village, changping town, HangZhou metropolis, ZheJiang province, China. The organization is ISO 9001:2008 certified.The firm has several types of products.After many years of advancement ,we have a powerful staff with superb design and style abilities and production management. Major goods are as following:powder metallurgy mould magnetic materials moldiron silicon mold. Packing & Shipping FAQ 1. who are we?We are dependent in ZheJiang , China, begin from 2013,offer to North The us(20.00%),Japanese Europe(20.00%),Domestic Market place(20.00%),South The united states(10.00%),Southeast Asia(10.00%),Mid East(5.00%),Western Europe(5.00%), 25A-370 25mm DC 12v 24v velocity ratio 145 DC reduction motor do-it-yourself for intelligent electrical manage toy automobiles, do it yourself robot motor Northern Europe(5.00%),South Asia(5.00%). There are total about 101-200 men and women in our business office.2. how can we guarantee quality?Usually a pre-manufacturing sample just before mass productionAlways closing Inspection just before shipment3.what can you get from us?Components Moulds,Powder Metallurgy Metallic Elements / MIM Metallic Parts4. why must you buy from us not from other suppliers?We are skilled maker of all types of metallic elements with 9years knowledge, specialized in powder metallurgy and CNC machining.We can supply the plans for your option to achieve the very best price and top quality with diverse production procedure.5. what services can we supply?Accepted Delivery Terms: FOB,CFR,CIF,EXW,Convey Delivery;Accepted Payment Currency:USD,CNYAccepted Payment Variety: T/T,L/C,PayPal,Western Union,Money,Escrow 12V24V36V48V20A dc motor speed controller Language Spoken:English,Chinese

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Motor

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China Good Quality Reduction Gearbox Bbq 12V Low Rpm DC Electric High Torque Micro Dc Motor for Camera     with Hot selling	China Good Quality Reduction Gearbox Bbq 12V Low Rpm DC Electric High Torque Micro Dc Motor for Camera     with Hot selling
editor by czh 2023-02-19

China dc brushless electric motor 24mm with planetary gearbox with Best Sales

Solution Description

dc brushless electric powered motor 24mm with planetary gearbox 

Product Application

Automated door operators, computerized strength conserving bath,electrical managed valve,oxygen equipment,optical products, Automat cordless energy tool,lighting,and so forth. 
 
  

TT Motor (HK) Industrial Co., Ltd. has been specializing in micro motors, gear motors and their respective parts since 2006.
Our products are widely used in entertainment systems, automobiles, home and industrial appliances and tools and many others. Our products are dependable and long-lasting, and backed by years of experience. We export 98% of our output worldwide. 
By leveraging our hard-won reputation for honesty, dependability and quality, TT aims to continue as a pioneer in the sales overseas by seeking global partners. If your company is an end-user of micro-motors, a distributor or an agent, please contact us. We look forward to being able to work together with you in the near future.

 
FAQ
Q: How to get?
A: send out us inquiry → acquire our quotation → negotiate particulars → confirm the sample → indication deal/deposit → mass production → cargo prepared → balance/delivery → more cooperation.
Q: How about Sample get?
A: Sample is accessible for you. remember to make contact with us for details. After we charge you sample fee, you should feel straightforward, it would be refund when you spot formal get.
Q: Which shipping and delivery way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Publish,Sea are offered.The other shipping techniques are also obtainable, make sure you speak to us if you need ship by the other shipping way. 
Q: How extended is the supply?
A: Devliver time relies upon on the quantity you order. typically it normally takes fifteen-twenty five doing work times.
Q: My deal has missing merchandise. What can I do?
A: Remember to make contact with our help group and we will confirm your order with the bundle contents.We apologize for any inconveniences. 
Q: How to confirm the payment?
A: We acknowledge payment by T/T, PayPal, the other payment approaches also could be acknowledged,Remember to get in touch with us just before you pay by the other payment techniques. Also 30-fifty% deposit is available, the stability money ought to be paid prior to shipping and delivery.

Application: Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: precious metal-brush motor
Function: Control
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Application: Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: precious metal-brush motor
Function: Control
Casing Protection: Protection Type
Number of Poles: 4

###

Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China dc brushless electric motor 24mm with planetary gearbox     with Best SalesChina dc brushless electric motor 24mm with planetary gearbox     with Best Sales
editor by czh 2023-01-12

China ZD 10W-300W High Efficient Electric Brushless DC Planetary Gear Motor With Gearbox manufacturer

Solution Description

Design Variety

       ZD Leader has a vast selection of micro motor generation traces in the business, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. By means of technological innovation and customization, we aid you develop fantastic application methods and give adaptable options for various industrial automation scenarios.

• Design Assortment
Our professional product sales representive and technical crew will pick the appropriate model and transmission remedies for your usage rely on your distinct parameters.

• Drawing Ask for

If you need much more merchandise parameters, catalogues, CAD or 3D drawings, you should make contact with us.
 

• On Your Require

We can modify normal merchandise or personalize them to satisfy your particular wants.

Merchandise Parameters


Planetary Gear Motor

MOTOR Frame Dimensions 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR Kind Brush or Brushless
OUTPUT Electrical power 10W / 15W / 25W / 40W / 60W / 90W / a hundred and twenty W / 140W / 180W / 200W / 300W(Can Be Personalized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm Spherical Shaft, D-Reduce Shaft, Essential-Way Shaft (Can Be Custom-made)
Voltage sort 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX Body Size 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio three.65K-392.98K
Variety Of Pinion GN Kind / GU Kind

Variety Of Planetary Gear Motor

Other Items

Organization Profile

 

US $25-150
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Type: Z2

###

Customization:

###

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type
US $25-150
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Type: Z2

###

Customization:

###

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China ZD 10W-300W High Efficient Electric Brushless DC Planetary Gear Motor With Gearbox     manufacturer China ZD 10W-300W High Efficient Electric Brushless DC Planetary Gear Motor With Gearbox     manufacturer
editor by czh 2023-01-03