Product Description
nema17 Planetary Gearbox Stepping Motor price on hot sale
General Specificati
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(12mm from flange) | ≤80N |
Max.Shaft Axial Load | ≤30N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1.5° |
Electrical Specification:
Model No. | Step Angle | Motor Length | Current /Phase |
Resistance /Phase |
Inductance /Phase |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm | Kg | |
JK42HS34-1334 | 1.8 | 34 | 1.33 | 2.1 | 2.5 | 2.2 | 4 | 120 | 34 | 0.22 |
JK42HS34-0406 | 1.8 | 34 | 0.4 | 24 | 15 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS40-1684 | 1.8 | 40 | 1.68 | 1.65 | 3.2 | 3.6 | 4 | 150 | 54 | 0.28 |
JK42HS40-1206 | 1.8 | 40 | 1.2 | 3 | 2.7 | 2.9 | 6 | 150 | 54 | 0.28 |
JK42HS48-1684 | 1.8 | 48 | 1.68 | 1.65 | 2.8 | 4.4 | 4 | 260 | 68 | 0.35 |
JK42HS48-1206 | 1.8 | 48 | 1.2 | 3.3 | 2.8 | 3.17 | 6 | 260 | 68 | 0.35 |
JK42HS60-1704 | 1.8 | 60 | 1.7 | 3 | 6.2 | 7.3 | 4 | 280 | 102 | 0.5 |
JK42HS60-1206 | 1.8 | 60 | 1.2 | 6 | 7 | 5.6 | 6 | 280 | 102 | 0.5 |
42HS Planetary Gearbox Specifications
Reduction ratio | 3.71 | 5.18 | 13.76 | 19.2 | 26.8 | 51 | 71 | 99.5 | 139 |
Number of gear trains | 1 | 2 | 3 | ||||||
Length(L2) mm | 27.3 | 35 | 42.7 | ||||||
Max.rated torque kg.cm | 20 | 30 | 40 | ||||||
Short time permissible torque kg.cm | 40 | 60 | 80 | ||||||
Weight g | 350 | 450 | 550 |
Products of special request can be made according to the customer request !
company information:
our certification:
Our Company offers 3 major series of products:Hybrid Stepper motors, Brushless Dc motor and Dc Brush motor.
We are always continues develop new type models.If you need other kinds of parts, please don’t hesitate to contact us.
Amy Gao
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Compound |
Function: | Run |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Samples: |
US$ 21.5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
What are some common challenges or issues associated with gear motors, and how can they be addressed?
Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:
1. Gear Wear and Failure:
Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:
- Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
- Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
- Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.
2. Backlash and Inaccuracy:
Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:
- Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
- Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
- Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.
3. Noise and Vibrations:
Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:
- Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
- Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
- Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.
4. Overheating and Thermal Management:
Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:
- Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
- Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
- Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.
5. Load Variations and Shock Loads:
Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:
- Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
- Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
- Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.
By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2024-03-28
China wholesaler 72mm DC Planetary Gear Motor with Gearbox Electric Drum Motor vacuum pump design
Product Description
Product Pictures
Product Parameter
Brush Motor Technical Data:
Model |
Voltage |
Power |
No-Load Current |
No-Load Speed |
Rated Current |
Rated Speed |
Rated Torque |
Z72DPN1260-30S |
12V |
60W |
2.0A |
3500rpm |
7.2A |
3000rpm |
0.191N.m |
Z72DPN2490-30S |
24V |
90W |
1.5A |
3400rpm |
5.5A |
3000rpm |
0.287N.m |
Z72DPN24120-30S |
24V |
120W |
2.0A |
3500rpm |
7.2A |
3000rpm |
0.382N.m |
Brush DC Planetary Gear Motor Technical Data-72DPN2490-30S:
Ratio | 3.65 | 5.36 | 6.55 | 8.63 | 14 | 19 | 25 | 28 |
Out-put Speed(rpm) | 822 | 560 | 458 | 348 | 222 | 159 | 122 | 107 |
Allowable Torque(N.m) | 0.94 | 1.38 | 1.69 | 2.23 | 3.25 | 4.41 | 5.8 | 6.5 |
Reduction Stage | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
Ratio | 34 | 45 | 58 | 67 | 81 | 91 | 103 | 119 |
Out-put Speed(rpm) | 89 | 67 | 52 | 45 | 37 | 33 | 29 | 25 |
Allowable Torque(N.m) | 7.9 | 10.44 | 13.46 | 14.01 | 16.94 | 19.03 | 21.54 | 24.89 |
Reduction Stage | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
Ratio | 128 | 146 | 165 | 192 | 132 | 302 | 393 | |
Out-put Speed(rpm) | 24 | 21 | 18 | 16 | 13 | 9.9 | 7.6 | |
Allowable Torque(N.m) | 26.77 | 30.54 | 34.51 | 40.16 | 48.52 | 63.37 | 82.19 | |
Reduction Stage | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
Product Advantages
Planetary gear reducer is a new generation of practical products independently developed by our company ,which has the following main features:
*Low noise *Hight torque
*Low Backlash *High stability
*High efficiency *High input speed
Product detailsProduct Application
Related Products:
Our products have the features of small size,light weight,high bearing capacity ,long service life,smooth
operation ,low noise,large output torque,high speed ratio,high efficiency and safe performance.
It has the characteristics of power split and multi-tooth meshing.
We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors,
Brushless DC Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc.
You can email us to recommend needed motors per your specification.
Company profile
LunYee Culture:
L-Loyalty to Customers
U-Unity of working together
N-New things introduced by us in our industry
Y-Yield returns and enjoy together
E- Easy to buy
E- Easy to use
A satisfying one-stop service comes from our continuous innovation team and our rigorously-inspected sub-contracters!
Our products are widely applied to machine tools, industrial robot,textile machine,packing machine,food machine, medical appliance,CNC system and air condition and so on!
FAQ:
Q1. Can I have a sample order?
A: Yes, we can sell a sample, sit is pleased to receive a sample order to test and check the quality of products.
Q2. How long is the warranty?
A: The products come with a one-year warranty.
Q3. Can our logo be printed on this product?
A: Yes, please inform us formally before production and confirm the design firstly based on our sample.
Application: | Universal |
---|---|
Operating Speed: | High Speed |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Structure and Working Principle: | Brush |
Brand: | Lunyee |
Customization: |
Available
|
|
---|
What are the maintenance requirements for gear motors, and how can longevity be maximized?
Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:
1. Lubrication:
Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.
2. Inspection and Cleaning:
Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.
3. Temperature and Environmental Considerations:
Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.
4. Load Monitoring and Optimization:
Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.
5. Alignment and Vibration Analysis:
Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.
6. Preventive Maintenance and Regular Inspections:
Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.
By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
Can you explain the advantages of using gear motors in various mechanical systems?
Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:
1. Torque Amplification:
One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.
2. Speed Control:
Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.
3. Directional Control:
Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.
4. Efficiency and Power Transmission:
Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.
5. Compact and Space-Saving Design:
Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.
6. Durability and Reliability:
Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.
By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.
editor by CX 2023-12-04
China manufacturer High Torque DC Planetary Gearbox Motor Gear Motor with Aluminum Bracket for Electric String Trimmer with Hot selling
Product Description
Quiet stable and reliable for long life operation
Motor type | 63ZYT-125-24 | |
Protection grade | IP50 | |
Duty cycle | S1 (100%) | |
Rated voltage | 24 | V |
Rated current | 4.9 | A |
Input power | 117.6 | W |
No-load current | 0.4 | A |
Rated torque | 0.27 | Nm |
Rated speed | 3300 | ±10% rpm |
Rated output power | 93.3 | W |
Friction torque | 2 | Ncm |
efficiency | 80% | |
Maximum torque | 1.3 | ±10% Nm |
Maximum current | 23 | A |
No-load speed | 3650 | ±10% rpm |
Maximum power | 245 | W |
Maximum shell temperature | 85 | ºC |
Weight | 1.7 | Kg |
Planetary gear box | F1130 | |
Protection grade | IP65 | |
Reduction ratio | 710.5:1 | |
Rated torque | 120 | Nm |
Maximum torque | 180 | Nm |
Ambient temperature | -20 to 85 | ºC |
Grease Smart | Smart top 28 | |
Grease temperature range | -20 to 160 | ºC |
Function: | Control, Driving |
---|---|
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Certification: | ISO9001, CCC, CE |
Brand: | Jintian |
Power: | 117.6W |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Benefits of a Planetary Motor
Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Solar gear
The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.
Sun gear
The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Planetary gear
A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.
Planetary gearbox
A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Planetary gear motor
Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.
editor by CX 2023-11-09
China Hot selling DC Gearbox Electric Permant Magnet Planetary Gear Motor with High Torque for Medical Equipment brushless motor
Product Description
16ZYJ DC Gear Motor | |||||
Basic Info | |||||
Item | Data | ||||
Tem Rise | 40K | ||||
Working Tem | (-20ºC~+80ºC) | ||||
Insulation Resistance | 100MΩ min 500VDC | ||||
Surge Test | 500VAC for 1min | ||||
Insulation Class | E | ||||
Weight | 45g |
Specification | |||||||||||
PN | Rated Voltage | Initial Speed | Ratio | Power | Noload Speed | Noload Current | Rated Speed | Rated Current | Rated Torque | Stall Torque | Stall Current |
V DC | rpm | 1:xxx | W | rpm | mA | rpm | mA | Kg.cm | Kg.cm | mA | |
16ZYJ-75A | 3 | 7500 | 100 | 2.2 | 75 | 80 | 60 | 150 | 1.8 | 3 | 600 |
16ZYJ-100A | 6 | 15000 | 150 | 2.2 | 100 | 80 | 130 | 160 | 2 | 3.5 | 600 |
16ZYJ-500A | 9 | 15000 | 30 | 2.2 | 500 | 80 | 400 | 200 | 1 | 2 | 600 |
Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.
Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.
The AC/DC gear motors are based upon to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.
These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.
Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.
Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.
Please kindly contact us to get a catalogue.
Shipping&Payment
Terms of price | FOB,CIF,CFR,EXW,DDP,etc. |
Terms of payment | 100% T/T in advance for samples |
Bulk quantity payment way can be negotited |
|
Warranty | 12 months limited warranty once the items are delivered to the buyer. |
Lead time | Usually within 2 weeks for trial orders, within 3 weeks for bulk orders. |
Package | Carton o plywood pallet. |
Place of loading | ZheJiang , HangZhou, etc. |
Shipment carrier | Items are usually shipped via Fedex,DHL,TNT,UPS,EMS for trial orders and via vessel for bulk orders. |
Delivery time | Usually within 5 working days by Express 15-30 working days by vessel |
Our promise to our Customers:
1. Answer customer’s inquiry within 2 working days.
2. Reply to our customer questions & Concerns within 3 working days.
3. Acknowledge Customer purchase orders within 24 hours.
4. Standard Lead time is within 4 weeks. Respond to special product development within 15 weeks.
5. Flexible delivery methods: By air, sea and express carrier using the customer’s forwarder.
Application: | Universal, Industrial, Household Appliances, Car, Power Tools, Robot |
---|---|
Operating Speed: | High Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Open Type |
Number of Poles: | 6 |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Benefits of a Planetary Motor
Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Solar gear
The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.
Sun gear
The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Planetary gear
A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.
Planetary gearbox
A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Planetary gear motor
Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.
editor by CX 2023-04-20
China dc brushless electric motor 24mm with planetary gearbox with Best Sales
Solution Description
dc brushless electric powered motor 24mm with planetary gearbox
Product Application
Automated door operators, computerized strength conserving bath,electrical managed valve,oxygen equipment,optical products, Automat cordless energy tool,lighting,and so forth.
TT Motor (HK) Industrial Co., Ltd. has been specializing in micro motors, gear motors and their respective parts since 2006.
Our products are widely used in entertainment systems, automobiles, home and industrial appliances and tools and many others. Our products are dependable and long-lasting, and backed by years of experience. We export 98% of our output worldwide.
By leveraging our hard-won reputation for honesty, dependability and quality, TT aims to continue as a pioneer in the sales overseas by seeking global partners. If your company is an end-user of micro-motors, a distributor or an agent, please contact us. We look forward to being able to work together with you in the near future.
FAQ
Q: How to get?
A: send out us inquiry → acquire our quotation → negotiate particulars → confirm the sample → indication deal/deposit → mass production → cargo prepared → balance/delivery → more cooperation.
Q: How about Sample get?
A: Sample is accessible for you. remember to make contact with us for details. After we charge you sample fee, you should feel straightforward, it would be refund when you spot formal get.
Q: Which shipping and delivery way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Publish,Sea are offered.The other shipping techniques are also obtainable, make sure you speak to us if you need ship by the other shipping way.
Q: How extended is the supply?
A: Devliver time relies upon on the quantity you order. typically it normally takes fifteen-twenty five doing work times.
Q: My deal has missing merchandise. What can I do?
A: Remember to make contact with our help group and we will confirm your order with the bundle contents.We apologize for any inconveniences.
Q: How to confirm the payment?
A: We acknowledge payment by T/T, PayPal, the other payment approaches also could be acknowledged,Remember to get in touch with us just before you pay by the other payment techniques. Also 30-fifty% deposit is available, the stability money ought to be paid prior to shipping and delivery.
Application: | Industrial, Household Appliances, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | precious metal-brush motor |
Function: | Control |
Casing Protection: | Protection Type |
Number of Poles: | 4 |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
Application: | Industrial, Household Appliances, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | precious metal-brush motor |
Function: | Control |
Casing Protection: | Protection Type |
Number of Poles: | 4 |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
Dynamic Modeling of a Planetary Motor
A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.
planetary gear system
A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
planetary gear train
To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?
planetary gear train with fixed carrier train ratio
The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
planetary gear train with zero helix angle
The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!
planetary gear train with spur gears
A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
planetary gear train with helical gears
A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.
editor by czh 2023-01-12
China ZD 10W-300W High Efficient Electric Brushless DC Planetary Gear Motor With Gearbox manufacturer
Solution Description
Design Variety
ZD Leader has a vast selection of micro motor generation traces in the business, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. By means of technological innovation and customization, we aid you develop fantastic application methods and give adaptable options for various industrial automation scenarios.
• Design Assortment
Our professional product sales representive and technical crew will pick the appropriate model and transmission remedies for your usage rely on your distinct parameters.
• Drawing Ask for
If you need much more merchandise parameters, catalogues, CAD or 3D drawings, you should make contact with us.
• On Your Require
We can modify normal merchandise or personalize them to satisfy your particular wants.
Merchandise Parameters
Planetary Gear Motor
MOTOR Frame Dimensions | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR Kind | Brush or Brushless |
OUTPUT Electrical power | 10W / 15W / 25W / 40W / 60W / 90W / a hundred and twenty W / 140W / 180W / 200W / 300W(Can Be Personalized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm Spherical Shaft, D-Reduce Shaft, Essential-Way Shaft (Can Be Custom-made) |
Voltage sort | 12V,24V,48V |
Accessories | Electric Brake / Encoder |
GEARBOX Body Size | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | three.65K-392.98K |
Variety Of Pinion | GN Kind / GU Kind |
Variety Of Planetary Gear Motor
Other Items
Organization Profile
US $25-150 / Piece | |
1 Piece (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Type: | Z2 |
###
Customization: |
Available
|
---|
###
MOTOR FRAME SIZE | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR TYPE | Brush or Brushless |
OUTPUT POWER | 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized) |
Voltage type | 12V,24V,48V |
Accessories | Electric Brake / Encoder |
GEARBOX FRAME SIZE | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | 3.65K-392.98K |
Type Of Pinion | GN Type / GU Type |
US $25-150 / Piece | |
1 Piece (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Type: | Z2 |
###
Customization: |
Available
|
---|
###
MOTOR FRAME SIZE | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR TYPE | Brush or Brushless |
OUTPUT POWER | 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized) |
Voltage type | 12V,24V,48V |
Accessories | Electric Brake / Encoder |
GEARBOX FRAME SIZE | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | 3.65K-392.98K |
Type Of Pinion | GN Type / GU Type |
How to Maximize Gear Motor Reliability
A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.
Applications of a gear motor
Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Types
Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Functions
A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.
Reliability
The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Cost
The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.
editor by czh 2023-01-03
China NEMA 8, 11, 14, 16, 17, 23, 34, 43 Electric Stepping Stepper Geared Stepper Motor with Planetary Gearbox motor driver
Merchandise Description
Merchandise | Requirements | |
Phase Angle | one.8° | |
Temperature Increase | 80ºCmax | |
Ambient Temperature | -20ºC~+50ºC | |
Insulation Resistance | one hundred MΩ Min. ,500VDC | |
Dielectric Power | 500VAC for 1minute | |
Shaft Radial Enjoy | .02Max. (450g-load) | |
Shaft Axial Play | .08Max. (450g-load) | |
Max. radial force | 75N (20mm from the flange) | |
Max. axial drive | 15N |
Technical specs:
Design No. | Step Angle | Motor Length | Recent /Phase |
Resistance /Phase |
Inductance /Stage |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm | Kg | |
JK57HS41-1006 | one.8 | 41 | one | 7.one | 8 | .forty eight | 6 | 250 | one hundred fifty | .forty seven |
JK57HS41-2008 | one.eight | forty one | two | 1.four | 1.4 | .39 | eight | 250 | 150 | .47 |
JK57HS41-2804 | one.8 | forty one | 2.eight | .seven | one.4 | .fifty five | 4 | 250 | a hundred and fifty | .forty seven |
JK57HS51-1006 | one.eight | fifty one | 1 | 6.6 | 8.2 | .seventy two | 6 | three hundred | 230 | .fifty nine |
JK57HS51-2008 | 1.8 | fifty one | two | one.8 | 2.seven | .nine | 8 | three hundred | 230 | .fifty nine |
JK57HS51-2804 | 1.8 | fifty one | two.8 | .83 | two.two | 1.01 | 4 | 300 | 230 | .59 |
JK57HS56-2006 | 1.8 | 56 | two | 1.8 | 2.5 | .nine | six | 350 | 280 | .sixty eight |
JK57HS56-2108 | one.8 | fifty six | two.1 | 1.8 | two.5 | 1 | eight | 350 | 280 | .68 |
JK57HS56-2804 | one.8 | 56 | 2.8 | .9 | 2.5 | 1.2 | 4 | 350 | 280 | .sixty eight |
JK57HS64-2804 | one.eight | 64 | 2.8 | .eight | two.three | 1 | four | four hundred | three hundred | .75 |
JK57HS76-2804 | one.8 | 76 | two.8 | 1.one | three.6 | 1.89 | 4 | 600 | 440 | 1.1 |
JK57HS76-3006 | 1.eight | 76 | three | 1 | one.six | 1.35 | 6 | 600 | 440 | one.1 |
JK57HS76-3008 | one.8 | 76 | 3 | one | one.eight | one.five | eight | 600 | 440 | one.1 |
JK57HS82-3004 | one.8 | 82 | three | one.two | 4 | two.one | four | a thousand | 600 | one.two |
JK57HS82-4008 | 1.8 | 82 | 4 | .8 | one.eight | two | eight | 1000 | 600 | 1.2 |
JK57HS82-4204 | one.8 | eighty two | four.two | .seven | two.5 | 2.2 | 4 | a thousand | 600 | one.two |
JK57HS100-4204 | one.8 | one hundred | 4.two | .75 | three | three | four | 1100 | 700 | 1.three |
JK57HS112-3004 | one.eight | 112 | three | 1.six | seven.five | 3 | four | 1200 | 800 | 1.4 |
JK57HS112-4204 | 1.8 | 112 | four.2 | .nine | three.eight | three.one | four | 1200 | 800 | 1.4 |
Planetary Gearbox Specification:
Reduction ratio | 3.six | 4.twenty five | 13 | fifteen | 18 | 23 | 47 | 55 | sixty five | seventy seven | 121 | 154 | 187 | 220 | 260 | 307 |
Number of equipment trains | 1 | 2 | 3 | 4 | ||||||||||||
(L2) Duration(mm) | 37.eight | 49.five | 60.eight | 71.9 | ||||||||||||
Max.rated torque(N.m) | 3 | 12 | 24 | 30 | ||||||||||||
Limited time permissible torque(N.m) | 9 | 36 | 72 | 90 | ||||||||||||
Efficiency( %) | 90% | 81% | 73% | 66% | ||||||||||||
Weight(g) | 489 | 681 | 871 | 1066 |
Drawing(device=mm)
US $21.67 / Piece | |
3 Pieces (Min. Order) |
###
Application: | Nc Machine Tool |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 21.67/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Item | Specifications | |
Step Angle | 1.8° | |
Temperature Rise | 80ºCmax | |
Ambient Temperature | -20ºC~+50ºC | |
Insulation Resistance | 100 MΩ Min. ,500VDC | |
Dielectric Strength | 500VAC for 1minute | |
Shaft Radial Play | 0.02Max. (450g-load) | |
Shaft Axial Play | 0.08Max. (450g-load) | |
Max. radial force | 75N (20mm from the flange) | |
Max. axial force | 15N |
###
Model No. | Step Angle | Motor Length | Current /Phase |
Resistance /Phase |
Inductance /Phase |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm | Kg | |
JK57HS41-1006 | 1.8 | 41 | 1 | 7.1 | 8 | 0.48 | 6 | 250 | 150 | 0.47 |
JK57HS41-2008 | 1.8 | 41 | 2 | 1.4 | 1.4 | 0.39 | 8 | 250 | 150 | 0.47 |
JK57HS41-2804 | 1.8 | 41 | 2.8 | 0.7 | 1.4 | 0.55 | 4 | 250 | 150 | 0.47 |
JK57HS51-1006 | 1.8 | 51 | 1 | 6.6 | 8.2 | 0.72 | 6 | 300 | 230 | 0.59 |
JK57HS51-2008 | 1.8 | 51 | 2 | 1.8 | 2.7 | 0.9 | 8 | 300 | 230 | 0.59 |
JK57HS51-2804 | 1.8 | 51 | 2.8 | 0.83 | 2.2 | 1.01 | 4 | 300 | 230 | 0.59 |
JK57HS56-2006 | 1.8 | 56 | 2 | 1.8 | 2.5 | 0.9 | 6 | 350 | 280 | 0.68 |
JK57HS56-2108 | 1.8 | 56 | 2.1 | 1.8 | 2.5 | 1 | 8 | 350 | 280 | 0.68 |
JK57HS56-2804 | 1.8 | 56 | 2.8 | 0.9 | 2.5 | 1.2 | 4 | 350 | 280 | 0.68 |
JK57HS64-2804 | 1.8 | 64 | 2.8 | 0.8 | 2.3 | 1 | 4 | 400 | 300 | 0.75 |
JK57HS76-2804 | 1.8 | 76 | 2.8 | 1.1 | 3.6 | 1.89 | 4 | 600 | 440 | 1.1 |
JK57HS76-3006 | 1.8 | 76 | 3 | 1 | 1.6 | 1.35 | 6 | 600 | 440 | 1.1 |
JK57HS76-3008 | 1.8 | 76 | 3 | 1 | 1.8 | 1.5 | 8 | 600 | 440 | 1.1 |
JK57HS82-3004 | 1.8 | 82 | 3 | 1.2 | 4 | 2.1 | 4 | 1000 | 600 | 1.2 |
JK57HS82-4008 | 1.8 | 82 | 4 | 0.8 | 1.8 | 2 | 8 | 1000 | 600 | 1.2 |
JK57HS82-4204 | 1.8 | 82 | 4.2 | 0.7 | 2.5 | 2.2 | 4 | 1000 | 600 | 1.2 |
JK57HS100-4204 | 1.8 | 100 | 4.2 | 0.75 | 3 | 3 | 4 | 1100 | 700 | 1.3 |
JK57HS112-3004 | 1.8 | 112 | 3 | 1.6 | 7.5 | 3 | 4 | 1200 | 800 | 1.4 |
JK57HS112-4204 | 1.8 | 112 | 4.2 | 0.9 | 3.8 | 3.1 | 4 | 1200 | 800 | 1.4 |
###
Reduction ratio | 3.6 | 4.25 | 13 | 15 | 18 | 23 | 47 | 55 | 65 | 77 | 121 | 154 | 187 | 220 | 260 | 307 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||||||
(L2) Length(mm) | 37.8 | 49.5 | 60.8 | 71.9 | ||||||||||||
Max.rated torque(N.m) | 3 | 12 | 24 | 30 | ||||||||||||
Short time permissible torque(N.m) | 9 | 36 | 72 | 90 | ||||||||||||
Efficiency( %) | 90% | 81% | 73% | 66% | ||||||||||||
Weight(g) | 489 | 681 | 871 | 1066 |
US $21.67 / Piece | |
3 Pieces (Min. Order) |
###
Application: | Nc Machine Tool |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 21.67/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Item | Specifications | |
Step Angle | 1.8° | |
Temperature Rise | 80ºCmax | |
Ambient Temperature | -20ºC~+50ºC | |
Insulation Resistance | 100 MΩ Min. ,500VDC | |
Dielectric Strength | 500VAC for 1minute | |
Shaft Radial Play | 0.02Max. (450g-load) | |
Shaft Axial Play | 0.08Max. (450g-load) | |
Max. radial force | 75N (20mm from the flange) | |
Max. axial force | 15N |
###
Model No. | Step Angle | Motor Length | Current /Phase |
Resistance /Phase |
Inductance /Phase |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm | Kg | |
JK57HS41-1006 | 1.8 | 41 | 1 | 7.1 | 8 | 0.48 | 6 | 250 | 150 | 0.47 |
JK57HS41-2008 | 1.8 | 41 | 2 | 1.4 | 1.4 | 0.39 | 8 | 250 | 150 | 0.47 |
JK57HS41-2804 | 1.8 | 41 | 2.8 | 0.7 | 1.4 | 0.55 | 4 | 250 | 150 | 0.47 |
JK57HS51-1006 | 1.8 | 51 | 1 | 6.6 | 8.2 | 0.72 | 6 | 300 | 230 | 0.59 |
JK57HS51-2008 | 1.8 | 51 | 2 | 1.8 | 2.7 | 0.9 | 8 | 300 | 230 | 0.59 |
JK57HS51-2804 | 1.8 | 51 | 2.8 | 0.83 | 2.2 | 1.01 | 4 | 300 | 230 | 0.59 |
JK57HS56-2006 | 1.8 | 56 | 2 | 1.8 | 2.5 | 0.9 | 6 | 350 | 280 | 0.68 |
JK57HS56-2108 | 1.8 | 56 | 2.1 | 1.8 | 2.5 | 1 | 8 | 350 | 280 | 0.68 |
JK57HS56-2804 | 1.8 | 56 | 2.8 | 0.9 | 2.5 | 1.2 | 4 | 350 | 280 | 0.68 |
JK57HS64-2804 | 1.8 | 64 | 2.8 | 0.8 | 2.3 | 1 | 4 | 400 | 300 | 0.75 |
JK57HS76-2804 | 1.8 | 76 | 2.8 | 1.1 | 3.6 | 1.89 | 4 | 600 | 440 | 1.1 |
JK57HS76-3006 | 1.8 | 76 | 3 | 1 | 1.6 | 1.35 | 6 | 600 | 440 | 1.1 |
JK57HS76-3008 | 1.8 | 76 | 3 | 1 | 1.8 | 1.5 | 8 | 600 | 440 | 1.1 |
JK57HS82-3004 | 1.8 | 82 | 3 | 1.2 | 4 | 2.1 | 4 | 1000 | 600 | 1.2 |
JK57HS82-4008 | 1.8 | 82 | 4 | 0.8 | 1.8 | 2 | 8 | 1000 | 600 | 1.2 |
JK57HS82-4204 | 1.8 | 82 | 4.2 | 0.7 | 2.5 | 2.2 | 4 | 1000 | 600 | 1.2 |
JK57HS100-4204 | 1.8 | 100 | 4.2 | 0.75 | 3 | 3 | 4 | 1100 | 700 | 1.3 |
JK57HS112-3004 | 1.8 | 112 | 3 | 1.6 | 7.5 | 3 | 4 | 1200 | 800 | 1.4 |
JK57HS112-4204 | 1.8 | 112 | 4.2 | 0.9 | 3.8 | 3.1 | 4 | 1200 | 800 | 1.4 |
###
Reduction ratio | 3.6 | 4.25 | 13 | 15 | 18 | 23 | 47 | 55 | 65 | 77 | 121 | 154 | 187 | 220 | 260 | 307 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||||||
(L2) Length(mm) | 37.8 | 49.5 | 60.8 | 71.9 | ||||||||||||
Max.rated torque(N.m) | 3 | 12 | 24 | 30 | ||||||||||||
Short time permissible torque(N.m) | 9 | 36 | 72 | 90 | ||||||||||||
Efficiency( %) | 90% | 81% | 73% | 66% | ||||||||||||
Weight(g) | 489 | 681 | 871 | 1066 |
Benefits of a Planetary Motor
A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Self-centering planet gears ensure a symmetrical force distribution
A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.
Metal gears
A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Encoder
The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.
Durability
One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Cost
The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.
editor by czh 2022-12-14
in Tabuk Saudi Arabia sales price shop near me near me shop factory supplier 8mm Electric Motor with Small Plastic Planetary Gearbox manufacturer best Cost Custom Cheap wholesaler
EPG was awarded with “famous merchandise of Zhejiang Province” and “renowned manufacturer of Zhejiang Province”. Our items are manufactured by modern day computerized machinery and tools. Sophisticated thermo therapy tools, these kinds of as community warmth treatment oven, multi-use thermo treatment method oven, and many others. Description:
Item Identify : 8mm EPT motor ,Electric planet Speed EPT EPT, 3V , 6V , 12V ,24V DC planetary EPTed motor
EPT Sort: Planetary EPTs motor
EPT: Plastic
Equipment Ratio : 5:1 , ten:1 , twenty:1 , 25:1 , thirty:1 , forty:one , fifty:1 , sixty:1 ,70:one #8230100:1… customised
EPT diameter : 6mm , 8mm,10mm , 12mm , 16mm , 22mm , 24mm , 32mm , 38mm , 42mm ……
3V 6V 12V 24V accessible .
Torque: 20 – 50 Nm, ten – twenty Nm, five – 10 Nm,1 – 5 Nm, .5 – 1 Nm, .2 – .5 Nm, – .one Nm, .1 – .2 Nm
D Shaft :1mm stainless metal output shaft
Shade : Black amp silver
RPM : 10, twenty , thirty , 40 , fifty ,60 , 70, 100, two hundred…a thousand, 2000
We are a factory EPTized in metal EPT by way of powEPTmetallurgy process amp metal EPT molding MIM approach and dc motor .We solutions with ODM/OEM EPT motor layout and deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment , an expecienced EPTmotors maker.
A planetary (or epicyclical) EPT utilizes epicyclical EPTs for pace reduction. It is composed of one particular or a lot more toothed wheels turning about a rotating shaft. Every rotates on its personal aXiHu (West Lake) Dis.s as well as revolving about the central shaft. This gives excellent reduction capacity in a small place, making them typical in automatic EPTs.These mechanisms are employed anywhere performance and large reduction ratios are essential in a tiny room. Examples are automatic EPTs and several EPT applications utilizing electric EPT motors.
planetary EPTs also refer as epicyclic EPTing consisting 3 factors EPTEPT, earth EPT and ring EPT. EPT EPT is situated at the cEPTr that transmits torque to earth EPTs orbiting around the EPTEPT. The two programs are positioned inside the ring EPT. In the toothed formation EPTand world EPTs are externally mesh and ring EPT internally meshes.
Planetary EPT is found in a lot of variation and preparations to meet up with a wide assortment of velocity-ratio in the deign demands. Planetary EPT program is use in may differ apps this sort of as, clocks, lunar calendar, automobile mirror, toys, EPThead motor, turbine motor and many a lot more.
Equipment motors are utilised in apps that call for lower shaft speed and higher torque output. This describes a broad range of programs and eventualities, incXiHu (West Lake) Dis.Hu (West Lake) Dis. several of the EPTs and products we interact with on a every day foundation.
Gears for EPT , spur EPTs , helical EPTs . Gears are toothed wheels are produced of metallic or plastic and transmit movement when meshing with every single other .
There are brushed motors , with brushes made out of carbon .Brushless motor , stepper brushless DC motors .
Application :
- Healthcare and Well being Market
- Electronics and Telecommunication Industry
- Robotics Market
- EPT Sector
- CNC, EPT, and Resource EPT EPT
- EPT, Textile, EPT, Meals, and EPTlurgical EPT
Planetary EPT advantages:
- CoaXiHu (West Lake) Dis.al arrangement of enter shaft and output shaft
- Load distribution to a number of planetary EPTs
- High efficiency owing to lower rolling EPT
- Nearly unrestricted EPT ratio choices because of to mix of several world phases
- Suitable as planetary switching EPT because of to fiXiHu (West Lake) Dis.ng this or that part of the EPT
- Chance of use as overriding EPT
- Favorable volume output
- Suitability for a broad selection of application
Equipment motors for EPT application :electric shaver, tooth brush, kitchen area EPTs, hair clipper, sewing EPTs, massager, vibrator, hair dryer, rubdown EPT, corn popper, scissor hair EPT, EPT cleaner, XiHu (West Lake) Dis.Hu (West Lake) Dis.den resource, sanitary ware, window curtain, espresso EPT, whisk, EPT closestool, Sweeping robotic and and so on.
For Automotive products :conditioning damper actuator, door lock actuator, retractable rearview mirror, meters, optic aXiHu (West Lake) Dis.s manage gadget, head ligEPT beam amount adjuster, vehicle water pump, vehicle antenna, lumbar support, EPB,Auto tail gate electric powered putter,EPT liftgate and so on.
For Office EPT gear:OA tools, scanners, printers, multifunction EPTs duplicate EPTs, fax, FAX paper cutter, laptop peripheral, financial institution EPT, Video clip convention and so forth.
For ToEPTand types:radio manage product, computerized cruise management, trip-on toy and so on.
Geared motors for automated units .
Customized small EPTed motors , world EPThead , EPT EPTs , steel EPT , module EPT motor method powEPTEPT molding sintering EPTs
Production Workshop