Product Description
HangZhou CHINAMFG Machinery Co., Ltd.has been specialising in the manufacture and export of RV series worm gearboxes and other power transmission products for years, dedicated to provide to our customers good quality products in competitive prices. The main products are RV series worm gear speed reducers, UD series mechanical speed variators, G3 series helical geared motors and the specially designed reducers for polishing machines. Our products are widely used in the mechanical apparatus for foodstuff, ceramics, package, chemical, printing, and plastics, etc.
Xihu (West Lake) Dis.d by the idea, “Quality is the very key.”. the company proceeds in strict quality control to all the products, complying with the requirements of ISO9001:2008, and certificated, which has enabled our products to have enjoyed the successful sales, popularity and good reputation among the markets of Europe, Mid-east, and Souteast Asia.. Innovation, good quality, customers’ satisfication, and excellent service are the principles of the company. All customers at home and abroad are warmly welcome to contact us and negotiate for mutual business expansion. |
|
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
How do gear motors compare to other types of motors in terms of power and efficiency?
Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:
1. Gear Motors:
Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.
2. Direct-Drive Motors:
Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.
3. Stepper Motors:
Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.
4. Servo Motors:
Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.
5. Efficiency Considerations:
When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.
In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2024-05-03
China Best Sales R/F/K/S Series Helical Gear Gearbox AC Gear Motor Price 7.5kw 220 Voltage R Series Helical Reducer Speed Gear Motor vacuum pump oil
Product Description
Detailed Photos
Product Parameters
Products Description
R Series Helical Speed Reducers
R series helical gear reducer has high technological content; it adopts hardened gear surface design, which is reliable and durable and has high overload capacity.
It has the following characteristics
1,R series helical gear reducer is manufactured in accordance with international technical requirements, meeting the technical
requirements of most countries in the world.
2,The design of R series helical gear reducer plays a space-saving, high overload capacity.
3, R series helical gear reducer has low energy consumption, superior performance and high efficiency of more than 95%;
4,R series helical gear reducer has low vibration, low noise, and high energy saving;
5,R series helical gear reducer is made of high quality forged steel material, steel cast iron case, and the surface of gear is heat-treated by high frequency; reliable and durableTranslated with DeepL
R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,1. Features: small offset output, compact structure, maximum use of box space, use of integral casting box, good stiffness, can improve the strength of the shaft and bearing life.
2. Installation type and output mode: bottom seated type and large and small flange type installation, CHINAMFG shaft output.
3. Input mode: direct motor, shaft input and connecting flange input.
4. Reduction ratio: secondary 5~24.8, tertiary 27.2~264, R/R combination up to 18125.
5. Average efficiency: Class II 96%, Class III 94%, R/R combination 85%.
6. The R series specially designed for mixing can bear large axial and radial forces.
Technical parameters:
Coaxial coaxial output
R reducer
Power: 0.12KW~160KW
Torque: 1.4N · m ~ 23200N · m
Output speed: 0.06 ~ 1090r/min
Model example:
R17-Y4-4P-32.40-M1-0°
R: Series code
F: Shaft extension flange installation
17: Machine model
Y: Three phase AC asynchronous motor
4: Motor power
4P: motor stage
32.40: Transmission ratio
M1: Installation type
0 °: junction box position (0 ° – 270 °)
R series helical gear hardened gear reducer
Basic model of R series reducer:
R17R27R37R47R57R67R77R87R97R107R137R147R167
RF17RF27RF37RF47RF57RF67RF77RF87RF97RF107RF137RF147RF167
RX37RX57RX67RX77RX87RX97RX107RX127RX157
RXF37RXF57RXF67RXF77RXF87RXF97RXF107RXF127RXF157
R series helical gear reducer with hard tooth surface features small size, light weight, high bearing capacity, high efficiency, long service life, convenient installation, wide motor power range, fine transmission ratio classification, etc. It can be widely used in equipment that needs to be decelerated in various industries.
sewage treatment, chemical industry, pharmacy and other industries.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Hardness: | Hardened Tooth Surface |
---|---|
Installation: | Horizontal Type |
Layout: | Coaxial |
Gear Shape: | Cylindrical Gear |
Step: | Single-Step |
Type: | Gear Reducer |
Samples: |
US$ 1780/Piece
1 Piece(Min.Order) | |
---|
What factors should be considered when selecting an AC motor for a particular application?
When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:
- Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
- Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
- Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
- Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
- Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
- Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
- Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
- Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.
By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.
Are there energy-saving technologies or features available in modern AC motors?
Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:
- High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
- Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
- Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
- Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
- Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
- Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
- Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.
By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.
Can you explain the basic working principle of an AC motor?
An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:
- The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
- When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
- The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
- The induced voltage in the rotor windings creates a magnetic field in the rotor.
- The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
- The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
- The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.
This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.
editor by CX 2024-04-12
China CE Cetificated S Series Helical Worm Gearbox Motor Reducer Factory supplier
Error:获取session失败,
Application: | Motor, Machinery, Marine, Agricultural Machinery |
---|---|
Function: | Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Double-Step |
Samples: |
US$ 90/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by CX 2023-04-11
China factory High precise Planetary gearbox DRN Series Torque Planetary Gearbox Harmonic Drive Helical Gear Motor Reducer worm gear winch
Warranty: 1 years
Applicable Industries: Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Retail, Food Shop, Printing Shops, Energy & Mining, Food & Beverage Shops, High performance yeduc planetary gearbox harmonic drive speed reducer Other
Weight (KG): 3 KG
Customized support: OEM, ODM
Gearing Arrangement: Harmonic
Output Torque: 2.6-1760N.m
Input Speed: 750~3500rpm
Output Speed: 14-280rpm
Product name: Planetary reduction gearbox
Installation method: Any
Average life: 2000h
Protection level: 65IP
Maximum output radial force: Fr=300N
Maximum output axial force: Fa=100N
Backlash: ≥10arcmin
Rated output torque: TN
Fault stop torque: 2TN
Full load efficiency: 90%~94%
Packaging Details: plastic packaging bag & standard packing
PRODUCT DESCRIPTION
Product name | DRN Series Torque Planetary Gearbox Harmonic Drive Helical Gear Motor Reducer | ||||||
Reduction ratio | Single-stage:4/5/7/10 Bipolar:15/20/25/30/35/40/50/70 | ||||||
Rated output torque/ Nm | TN | ||||||
Fault stop torque/ Nm | 2TN | ||||||
Rated input speed/ min | 3000MIN-1 | ||||||
Input speed/ min | 3000MIN-1 | ||||||
Installation method | Any | ||||||
Installation method/ H | 2000h | ||||||
Maximum output radial force/ N | Fr=300N | ||||||
Maximum output axial force/ N | Fa=100N | ||||||
Full load efficiency/ % | 90%–94% | ||||||
Lubrication method | Long term effectiveness | ||||||
Protection level/ IP | 65 | ||||||
Backlash/ armin | ≥10 | ||||||
Operating temperature/ ℃ | -10℃~80℃ |
Types of Bevel Gears
Bevel Gears are used in a number of industries. They are used in wheeled excavators, dredges, conveyor belts, mill actuators, and rail transmissions. A bevel gear’s spiral or angled bevel can make it suitable for confined spaces. It is also used in robotics and vertical supports of rolling mills. You can use bevel gears in food processing processes. For more information on bevel gears, read on.
Spiral bevel gear
Spiral bevel gears are used to transmit power between two shafts in a 90-degree orientation. They have curved or oblique teeth and can be fabricated from various metals. Bestagear is one manufacturer specializing in medium to large spiral bevel gears. They are used in the mining, metallurgical, marine, and oil fields. Spiral bevel gears are usually made from steel, aluminum, or phenolic materials.
Spiral bevel gears have many advantages. Their mesh teeth create a less abrupt force transfer. They are incredibly durable and are designed to last a long time. They are also less expensive than other right-angle gears. They also tend to last longer, because they are manufactured in pairs. The spiral bevel gear also reduces noise and vibration from its counterparts. Therefore, if you are in need of a new gear set, spiral bevel gears are the right choice.
The contact between spiral bevel gear teeth occurs along the surface of the gear tooth. The contact follows the Hertz theory of elastic contact. This principle holds for small significant dimensions of the contact area and small relative radii of curvature of the surfaces. In this case, strains and friction are negligible. A spiral bevel gear is a common example of an inverted helical gear. This gear is commonly used in mining equipment.
Spiral bevel gears also have a backlash-absorbing feature. This feature helps secure the thickness of the oil film on the gear surface. The shaft axis, mounting distance, and angle errors all affect the tooth contact on a spiral bevel gear. Adjusting backlash helps to correct these problems. The tolerances shown above are common for bevel gears. In some cases, manufacturers make slight design changes late in the production process, which minimizes the risk to OEMs.
Straight bevel gear
Straight bevel gears are among the easiest types of gears to manufacture. The earliest method used to manufacture straight bevel gears was to use a planer equipped with an indexing head. However, improvements have been made in manufacturing methods after the introduction of the Revacycle system and the Coniflex. The latest technology allows for even more precise manufacturing. Both of these manufacturing methods are used by CZPT. Here are some examples of straight bevel gear manufacturing.
A straight bevel gear is manufactured using two kinds of bevel surfaces, namely, the Gleason method and the Klingelnberg method. Among the two, the Gleason method is the most common. Unlike other types of gear, the CZPT method is not a universal standard. The Gleason system has higher quality gears, since its adoption of tooth crowning is the most effective way to make gears that tolerate even small assembly errors. It also eliminates the stress concentration in the bevelled edges of the teeth.
The gear’s composition depends on the application. When durability is required, a gear is made of cast iron. The pinion is usually three times harder than the gear, which helps balance wear. Other materials, such as carbon steel, are cheaper, but are less resistant to corrosion. Inertia is another critical factor to consider, since heavier gears are more difficult to reverse and stop. Precision requirements may include the gear pitch and diameter, as well as the pressure angle.
Involute geometry of a straight bevel gear is often computed by varying the surface’s normal to the surface. Involute geometry is computed by incorporating the surface coordinates and the theoretical tooth thickness. Using the CMM, the spherical involute surface can be used to determine tooth contact patterns. This method is useful when a roll tester tooling is unavailable, because it can predict the teeth’ contact pattern.
Hypoid bevel gear
Hypoid bevel gears are an efficient and versatile speed reduction solution. Their compact size, high efficiency, low noise and heat generation, and long life make them a popular choice in the power transmission and motion control industries. The following are some of the benefits of hypoid gearing and why you should use it. Listed below are some of the key misperceptions and false assumptions of this gear type. These assumptions may seem counterintuitive at first, but will help you understand what this gear is all about.
The basic concept of hypoid gears is that they use two non-intersecting shafts. The smaller gear shaft is offset from the larger gear shaft, allowing them to mesh without interference and support each other securely. The resulting torque transfer is improved when compared to conventional gear sets. A hypoid bevel gear is used to drive the rear axle of an automobile. It increases the flexibility of machine design and allows the axes to be freely adjusted.
In the first case, the mesh of the two bodies is obtained by fitting the hyperboloidal cutter to the desired gear. Its geometric properties, orientation, and position determine the desired gear. The latter is used if the desired gear is noise-free or is required to reduce vibrations. A hyperboloidal cutter, on the other hand, meshes with two toothed bodies. It is the most efficient option for modeling hypoid gears with noise concerns.
The main difference between hypoid and spiral bevel gears is that the hypoid bevel gear has a larger diameter than its counterparts. They are usually found in 1:1 and 2:1 applications, but some manufacturers also provide higher ratios. A hypoid gearbox can achieve speeds of three thousand rpm. This makes it the preferred choice in a variety of applications. So, if you’re looking for a gearbox with a high efficiency, this is the gear for you.
Addendum and dedendum angles
The addendum and dedendum angles of a bevel gear are used to describe the shape and depth of the teeth of the gear. Each tooth of the gear has a slightly tapered surface that changes in depth. These angles are defined by their addendum and dedendum distances. Addendum angle is the distance between the top land and the bottom surface of the teeth, while dedendum angle is the distance between the pitch surface and the bottom surface of the teeth.
The pitch angle is the angle formed by the apex point of the gear’s pitch cone with the pitch line of the gear shaft. The dedendum angle, on the other hand, is the depth of the tooth space below the pitch line. Both angles are used to measure the shape of a bevel gear. The addendum and dedendum angles are important for gear design.
The dedendum and addendum angles of a bevel gear are determined by the base contact ratio (Mc) of the two gears. The involute curve is not allowed to extend within the base diameter of the bevel gear. The base diameter is also a critical measurement for the design of a gear. It is possible to reduce the involute curve to match the involute curve, but it must be tangential to the involute curve.
The most common application of a bevel gear is the automotive differential. They are used in many types of vehicles, including cars, trucks, and even construction equipment. They are also used in the marine industry and aviation. Aside from these two common uses, there are many other uses for bevel gears. And they are still growing in popularity. But they’re a valuable part of automotive and industrial gearing systems.
Applications of bevel gears
Bevel gears are used in a variety of applications. They are made of various materials depending on their weight, load, and application. For high-load applications, ferrous metals such as grey cast iron are used. These materials have excellent wear resistance and are inexpensive. For lower-weight applications, steel or non-metals such as plastics are used. Some bevel gear materials are considered noiseless. Here are some of their most common uses.
Straight bevel gears are the easiest to manufacture. The earliest method of manufacturing them was with a planer with an indexing head. Modern manufacturing methods introduced the Revacycle and Coniflex systems. For industrial gear manufacturing, the CZPT uses the Revacycle system. However, there are many types of bevel gears. This guide will help you choose the right material for your next project. These materials can withstand high rotational speeds and are very strong.
Bevel gears are most common in automotive and industrial machinery. They connect the driveshaft to the wheels. Some even have a 45-degree bevel. These gears can be placed on a bevel surface and be tested for their transmission capabilities. They are also used in testing applications to ensure proper motion transmission. They can reduce the speed of straight shafts. Bevel gears can be used in many industries, from marine to aviation.
The simplest type of bevel gear is the miter gear, which has a 1:1 ratio. It is used to change the axis of rotation. The shafts of angular miter bevel gears can intersect at any angle, from 45 degrees to 120 degrees. The teeth on the bevel gear can be straight, spiral, or Zerol. And as with the rack and pinion gears, there are different types of bevel gears.
in Aracaju Brazil sales price shop near me near me shop factory supplier Bevel Helical Gearbox with Permanent Magnet Synchronous Motor Integrate Variable Frequency Driver manufacturer best Cost Custom Cheap wholesaler
Our merchandise variety also covers locking assemblies (clamping components/locking device), taper bushes, QD bushes, bolt-on hubs, torque limiters, shaft collars, motor bases and motor slides, chain detachers, chain guides, common joint, rod ends and yokes. Moreover, WE CAN Produce Personalized VARIATORS, GEARED MOTORS, Electric powered MOTORS AND OTHER HYDRAULIC Products According TO CUSTOMERS’ DRAWINGS. If you need any data or samples, make sure you contact us and you will have our soon reply. SNKGA200A-MD100C EPTl helical EPT with Long term magnet synchronous motor integrate variable frequency EPTr for conveyor
SNKG Series prorduct undertake harden enamel surface area EPTl EPT and helical EPT to EPT, following the design basic principle of modularization , FEA analyse EPT, EPT lower-noise EPT tooth profile, with the traits of compact volume, substantial load efficiency and stable operating, trustworthiness and EPT service daily life.
Key rewards
-Straightforward wiring, reduced EPT
-Big amount of data, quickly pace, 100m, knowledge EPT is 500K
-All management models have the same condition, it indicates every node has the same rights to occupy the bus (ship and EPT)
-Interaction rate meets handle specifications, interaction information quantity supports necessary info reading through.
-Electrical eye and proXiHu (West Lake) Dis.mity change sensor provide signal to the EPTr right, it is convenient and dependable.
ABOUT US
ZheJiang EPT Drive Co.,Ltd(EPT) have a robust technological power with in excess of 350 personnel at current, incXiHu (West Lake) Dis.Hu (West Lake) Dis. over thirty engineering technicians, thirty top quality inspectors, masking an area of 80000 square meters and varieties of EPT processing EPTs and tests equipments. We have a excellent foundation for the market software deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment and service of substantial-stop velocity EPTs amp variators owning to the provincial engineering EPT research cEPTr,the lab of EPT velocity EPTs, and the foundation of contemporary R ampD.
Our goods are commonly utilized in ceramic sector, EPT industry, woodworking EPTry , higher voltage swap, foodstuff amp EPTrage, EPT amp printing, Storage amp EPT, hoisting amp transportation faXiHu (West Lake) Dis.Hu (West Lake) Dis.ties #8230etc , and EPT technically give the expert item amp provider for the medium and higher-conclude consumers, and our EPTes are ideal-selling in domestic, and even in overseas , this kind of as in Europe, North The usa, South The us, Middle EPT, South Asia, SouthEPT Asia, Africa #8230etc.
In the EPT , EPT will keep the creed of quotserving buyer, diligence amp simplicity, self-criticism, innovation, honesty, teamwork quot, and the principle of quotquality EPTs benefit quot to focus on the customers’ requirements and supply them the competitive EPT answer and EPT worth for them constantly, and make a higher-conclude equipment producing business and EPT a favored model of changing EPT items and upgrading constantly for the finish end users.
OUR Crew
High quality Handle
EPT:Insist on EPTrovement,Try for Excellence With the deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment of tools manufacturing indurstry,consumer never satirsfy with the existing good quality of our merchandise,on the contrary,wEPT the worth of quality.
EPT coverage:to enhance the general degree in the discipline of EPT EPT
EPT Look at:Steady EPTrovement , pursuit of excellence
EPT Philosophy:EPT EPTs price
three. Incoming EPT Manage
To establish the AQL acceptable level of incoming material management, to offer the content for the EPT inspection, sampling, immunity. On the acceptance of certified products to warehousing, substXiHu (West Lake) Dis.Hu (West Lake) Dis.rd items to get return, check out, rework, rework inspection accountable for monitoring undesirable, to keep track of the supplier to consider corrective steps to prevent recurrence.
four. Approach EPT Handle
The producing website of the 1st examination, inspection and final inspection, sampling in accordance to the requirements of some projects, judging the quality alter development found irregular phenomenon of manufacturing, and supervise the production department to enhance, get rid of the irregular phenomenon or point out.
5. FQC(Closing QC)
Following the production division will complete the solution, stand in the customer’s position on the concluded solution quality verification, in orEPTto ensure the top quality of customer anticipations and wants.
six. OQC(Outgoing QC)
Right after the merchandise sample inspection to deterEPT the experienced, allowing storage, but when the finished product from the warehouse just before the official delivery of the products, there is a examine, this is called the cargo inspection.Check out content material:In the warehouse storage and transfer status to verify, whilst confirming the shipping and delivery of the item is a product inspection to deterEPT the qualified products.
EPT
Shipping and delivery
in Port Harcourt Nigeria sales price shop near me near me shop factory supplier Teco R Series Foot Flange Mounted Hardened Helical Gear High Quality Gearbox with Ie2 Ie3 Motor manufacturer best Cost Custom Cheap wholesaler
Meanwhile, our merchandise are manufactured in accordance to large high quality standards, and complying with the intercontinental innovative normal criteria. Our company pays certain interest to customers’ wants, listening to the distinct needs of each and every customer and guaranteeing whole gratification. With comprehensive requirments, we can also build your specific developed product. TEPT, No. 3 very best offering motor brand in the world!
Product | Dimensions | EPT | Ratio | Two phase ratio | Torque |
R | thirteen(17~167) | .twelve-160KW | 1.3-289.74 | ninety-27001 | 70-18000N.m |
F | 10(37-157) | .12-200KW | 3.77-276.seventy seven | 87-31434 | 200-18000N.m |
K | twelve(37-187) | .12-200KW | 5.36-197.37 | ninety four-32625 | two hundred-50000N.m |
S | 7(37-97) | .12-22KW | six.8-288 | 110-33818 | 90-4200N.m |
EPT:
380/four hundred/415/440 Volts or on ask for
Constant rated, duty kind S1/one.fifteen
IP54/55/fifty six/sixty six TEFC
Mounting offered – Foot, Foot and flange (C* and D kinds), Flange (C* and D varieties)
Wide range of possibilities accessible
in Ufa Russian Federation sales price shop near me near me shop factory supplier R Series Inline Helical Geared Motor Gearbox Speed Reducer manufacturer best Cost Custom Cheap wholesaler
Thanks to our extensive item range and wealthy encounters in this market, With EPG brand registered in far more than 70 nations like The united states , Europe , Japan and so on, it has partners amongst planet prime enterprises, this sort of as JOHNDEERE, NEW HOLLAND, CLAAS, HONDA, KUBOTA, YANMAR, and so forth. In 2008, it was awarded with “Countrywide Export Commodity Inspection-totally free Enterprise”. EPT Parameter
EPT materials | EPT200 large-power cast iron(R37, R47, R57, R67, R77, R87) |
EPT substance | EPT250 Large toughness cast iron(R97, R 107, R137, R147, R167) |
Gear materials | 20CrMnTi |
Gear Surface area amphardness | HRC58 deg-sixty two deg |
Gear core hardness | HRC33 deg-seventy eight deg |
Input/Output shaft substance | 40Cr |
Equipment Machining precision | Exact grinding 6-five quality |
Warmth treatment | Carburizing, Quenching and so forth |
Effectiveness | Up to 92% |
Sound(Max) | 60-67dB |
Set up variety | Foot mounted, flange mounted |
Output type | Sound shaft |
EPT brand | NSK, SKF, HRB, ZWZ and so on |
Oil seal manufacturer | NAK, KSK and so on |
Lubricant | VG220 |
EPT | IP55, F class |
EPT shaft | 40Cr, Carburizing, Quenching and so forth |
Warranty | 12months |
Shade | Blue, Gray |
Model | SLR37 | SLR47 | SLR57 | SLR67 | SLR77 | SLR87 | EWR97 | SLR107 | SLR137 | SLR147 | SLR167 |
Fat | nine | fourteen | 24 | 27 | 33 | 60 | 110 | one hundred fifty | 255 | 365 | 615 |
Shaft #1060 | 25mm | 30mm | 35mm | 35mm | 40mm | 50mm | 60mm | 70mm | 90mm | 110mm | 120mm |
Application:
Ceramic Market
Glass Market
Foods Market
EPTlurgy Business
Beer amp Consume Market
EPT and dyeing Market
Textile Sector
Warehouse Logoistics Business
EPT operating EPTry
environmental protection gear Market
Leather-based Business
Pharmacy Sector
EPT images:
Deals:
Company Info:
Make contact with:
in Montreal Canada sales price shop near me near me shop factory supplier Worm Wheel Gearbox Speed Reducer Jack Worm Agricultural Planetary Helical Bevel Steering Gear Drive Motor Speed Nmrv Good Quantity Durableworm Gear Reducers manufacturer best Cost Custom Cheap wholesaler
We will give ideal providers and large high quality merchandise with all sincerity. EPG will usually adhere to it business spirit of getting practical, revolutionary, productive and outstanding to make the leading worldwide transmission drive. Keeping in brain that very good support is the key to cooperating with clients, we attempt to satisfy substantial top quality requirements, provide aggressive charges and make certain prompt supply.
Worm Wheel EPT Velocity EPT Jack Worm Agricultural Planetary Helical EPTl Steering Equipment Generate EPT Pace Nmrv Good quantity DurableWorm Gear EPTs
How does a worm gear perform?
How Worm Gears Operate. An electrical motor or engine applies rotational EPT by way of to the worm. EPT worm rotates towards the wheel, and the screw experience pushes on the enamel of the wheel. EPT wheel is pushed against the load.
Can a worm gear go each instructions?
Worm drives can go possibly route, but they want to be created for it. As you can envision, turning the worm shaft unEPTload will create a thrust aEPT the aXiHu (West Lake) Dis.s of the screw. Nonetheless, if you reverse the course the route of thrust will reverse as nicely.
EPT fundamental structure of the worm gear EPT is primarily composed of the worm equipment, the shaft, the bearing, the box body and its components. Can be divided into a few basic structural elements: box, worm gear, bearing and shaft mix. EPT box is the foundation of all the add-ons in the worm equipment EPT. It is an EPTant part that supports the fixed shaft parts, ensures the proper relative position of the EPT elements and supports the load performing on the EPT. EPT major perform of the worm gear is to transmit the movement and EPT between the two staggered shafts.
Gear made in China – replacement parts – in Gebze Turkey Reducer Helical Gearbox Gear Units Transmission Gear Geared Motor Speed Reducer Helical Gear Motor Worm Gearbox Reductor Hypoid Reducer with Torque Arm with ce certificate top quality low price
We – EPG Group the bigge EPT Chain and agricultural gearbox manufacturing unit in China with 5 various branches. For much more specifics: Mobile/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828
gear reducer helical gearbox equipment models transmission equipment geared motor speed reducer helical equipment motor worm gearbox reductor hypoid reducer with torque arm
hypoid gear box, gear reducer, gear unit, Industrial electrical agitator motor gearbox for mechanical liquid mixer, 90 diploma gearbox
Helical equipment motor, correct angle gearbox, equipment travel speed reducer
electric motor |
motor |
geared motor |
gear |
transmission gearbox |
gear box |
spare areas |
equipment motor |
geared motor |
transmission |
About us
Quality management
Packing
NON-Regular equipment speed reducer
Normal Gear reducer production
Certificate
Shipping
7-fifteen times
Contact us
The use of authentic gear manufacturer’s (OEM) portion quantities or trademarks , e.g. CASE® and John Deere® are for reference reasons only and for indicating item use and compatibility. Our firm and the listed substitution parts contained herein are not sponsored, accredited, or created by the OEM.