Product Description
Dia.32mm DC Planetary Geared Brush Motor
Product Description
Can be customized
12V plastic DC gear motor
Model | Application Parameters | Rated Torque of Gear Box | Instant Torque of Gear Box | Gear Ratio | Gear Box Length L1 |
|||||||
Rated | At No Load | At Rated Load | Overall Length L |
|||||||||
Voltage | Speed | Current | Speed | Current | Torque | |||||||
VDC | rpm | mA | rpm | mA | gf.cm | mN.m | mm | gf.cm | gf.cm | mm | ||
ZWBPD032032-94 | 12.0 | 57 | 230 | 52 | 715 | 4759 | 467 | 88.2 | 25000 | 80000 | 94 | 45.7 |
ZWBPD032032-133 | 12.0 | 41 | 230 | 36 | 715 | 6733 | 660 | 25000 | 80000 | 133 | ||
ZWBPD032032-188 | 12.0 | 29 | 230 | 26 | 715 | 9518 | 933 | 20000 | 80000 | 188 | ||
ZWBPD032032-272 | 12.0 | 20 | 265 | 18 | 715 | 10328 | 1013 | 98.2 | 25000 | 80000 | 272 | 55.7 |
ZWBPD032032-383 | 12.0 | 14 | 265 | 13 | 715 | 14542 | 1426 | 25000 | 80000 | 383 | ||
ZWBPD032032-540 | 12.0 | 10 | 265 | 9 | 715 | 20503 | 2011 | 25000 | 80000 | 540 | ||
ZWBPD032032-763 | 12.0 | 7 | 265 | 6 | 715 | 25000 | 2452 | 25000 | 80000 | 763 | ||
ZWBPD032032-1076 | 12.0 | 5 | 265 | 5 | 715 | 20000 | 1961 | 20000 | 80000 | 1076 |
above specifications just for reference and customizable according to requirements.
Integrated Drive Control Module.
Please let us know your requirements and we will provide you with micro transmission solutions.
2D Drawing
Detailed Photos
Application
Smart wearable devices | watch,VR,AR,XR and etc. |
Household application | kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc. |
communication equipment | 5G base station,video conference,mobile phone and etc. |
Office automation equipments | scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine, screen, lifting socket, display,notebook PC and etc. |
Automotive products | conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc. |
Toys and models | radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc. |
Medical equipments | blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc. |
Industrials | flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc. |
Electric power tools | electric drill, screwdriver,garden tool and etc. |
Precision instruments | optics instruments,automatic vending machine, wire-stripping machine and etc. |
Personal care | tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc. |
Consumer electronics | camera, mobile phone,digital camera, automatic retracting device,camcorder, kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc. |
robots | educational robot, programming robot, medical robot, escort robot and etc. |
Company Profile
HangZhou CHINAMFG Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly.
Workshop
Testing Equipment
1) Competitive Advantages
- 1) Competitive Advantages
19+year experience in manufacturing motor gearbox
We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
Competitive Price
Product Performance: Low noise, High efficiency, Long lifespan
Prompt Delivery: 15 working days after payment
Small Orders Accepted
2) Main Products
-
Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,
- Customized worm and gear transmission machinery;
- Precise electromechanical motion module;
- Precise component and assembly of plastic and metal powder injection.
Our Services
- ODM & OEM
- Gearbox design and development
- Related technology support
- Micro drive gearbox custom solution
Packaging & Shipping
1) Packing Details
packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.
2) Shipping Details
samples will be shipped within 10 days;
batch order leading time according to the actual situation.
Certifications
Certifications
We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).
and more…
FAQ
FAQ
1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.
2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.
3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.
4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.
5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.
6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide.
7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.
8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.
9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.
10. How do contact us ?
Please send an inquiry
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Industrial, Household Appliances, Car, Power Tools, Reducer |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Permanent Magnet |
Function: | Control |
Casing Protection: | Drip-Proof |
Number of Poles: | 4 |
Customization: |
Available
|
|
---|
How is the efficiency of a gear motor measured, and what factors can affect it?
The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:
Measuring Efficiency:
The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:
Efficiency = (Pout / Pin) * 100%
The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:
Pout = T * ω
The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:
Pin = V * I
By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.
Factors Affecting Efficiency:
Several factors can influence the efficiency of a gear motor. Here are some notable factors:
- Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
- Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
- Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
- Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
- Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
- Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.
By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
What are the different types of gears used in gear motors, and how do they impact performance?
Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:
1. Spur Gears:
Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.
2. Helical Gears:
Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.
3. Bevel Gears:
Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.
4. Worm Gears:
Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.
5. Planetary Gears:
Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.
6. Rack and Pinion:
Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.
The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.
editor by CX 2024-05-16
China Standard ZD Good Quality 6-200W, 15-3700W, 6-300W Power BLDC Brushless DC Geared Motor with Best Sales
Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Range Of Gear Motor
Pleas click the click button to view more detailed specification:
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Industrial, Household Appliances |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Type: | Z2 |
Customization: |
Available
|
|
---|
Are there innovations or emerging technologies in the field of gear motor design?
Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:
1. Miniaturization and Compact Design:
Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.
2. High-Efficiency Gearing:
New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.
3. Magnetic Gearing:
Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.
4. Integrated Electronics and Controls:
Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.
5. Smart and Condition Monitoring Capabilities:
New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.
6. Energy-Efficient Motor Technologies:
Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.
These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2024-05-10
China Best Sales Od 3mm Upto 50mm 45nm High Torque 3V 12V 24V Planetary Gearbox DC Geared Motor vacuum pump connector
Product Description
Product Description
Model: ZWBMD006006-711
Rated Voltage: 3V
No Load Speed: 26rpm
No load current: 40mA
Rated Speed: 22rpm
Rated Current: 100mA
Rated Torque: 296.9g.cm
Overall Length : 30.9mm
Rated Torque of Gear Box: 330g.cm
Instant Torque of Gear Box: 800g.cm
Gear Ratio: 711:1
Gear Box Length: 16.9mm
Specifications:
Model | Application Parameters | Rated Torque of Gear Box | Instant Torque of Gear Box | Gear Ratio | Gear Box Length L1 |
|||||||
Rated | At No Load | At Rated Load | Overall Length L |
|||||||||
Voltage | Speed | Current | Speed | Current | Torque | |||||||
VDC | rpm | mA | rpm | mA | gf.cm | mN.m | mm | gf.cm | gf.cm | mm | ||
ZWBMD006006-110 | 3.0 | 166 | 37 | 140 | 100 | 54.3 | 5.33 | 28.5 | 330 | 800 | 110.6 | 14.5 |
ZWBMD006006-148 | 3.0 | 124 | 37 | 105 | 100 | 72.8 | 7.14 | 28.5 | 330 | 800 | 148.1 | 14.5 |
ZWBMD006006-198 | 3.0 | 93 | 37 | 78 | 100 | 97.5 | 9.56 | 28.5 | 330 | 800 | 198.4 | 14.5 |
ZWBMD006006-266 | 3.0 | 69 | 37 | 58 | 100 | 130.5 | 12.80 | 28.5 | 330 | 800 | 265.7 | 14.5 |
ZWBMD006006-531 | 3.0 | 35 | 40 | 29 | 100 | 221.7 | 21.74 | 30.9 | 330 | 800 | 530.8 | 16.9 |
ZWBMD006006-711 | 3.0 | 26 | 40 | 21 | 100 | 296.9 | 29.12 | 30.9 | 330 | 800 | 711.0 | 16.9 |
ZWBMD006006-952 | 3.0 | 19 | 40 | 16 | 95 | 330 | 32.36 | 30.9 | 330 | 800 | 952.2 | 16.9 |
ZWBMD006006-1275 | 3.0 | 14 | 40 | 12 | 85 | 330 | 32.36 | 30.9 | 330 | 800 | 1275.2 | 16.9 |
ZWBMD006006-1708 | 3.0 | 11 | 40 | 10 | 75 | 330 | 32.36 | 30.9 | 330 | 800 | 1707.9 | 16.9 |
above specifications just for reference and customizable according to requirements.
Please let us know your requirements and we will provide you with micro transmission solutions.
2D Drawing
Detailed Photos
Application
Smart wearable devices | watch,VR,AR,XR and etc. |
Household application | kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc. |
communication equipment | 5G base station,video conference,mobile phone and etc. |
Office automation equipments | scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine, screen, lifting socket, display,notebook PC and etc. |
Automotive products | conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc. |
Toys and models | radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc. |
Medical equipments | blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc. |
Industrials | flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc. |
Electric power tools | electric drill, screwdriver,garden tool and etc. |
Precision instruments | optics instruments,automatic vending machine, wire-stripping machine and etc. |
Personal care | tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc. |
Consumer electronics | camera, mobile phone,digital camera, automatic retracting device,camcorder, kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc. |
robots | educational robot, programming robot, medical robot, escort robot and etc. |
Company Profile
HangZhou CHINAMFG Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly.
Workshop
Testing Equipment
1) Competitive Advantages
- 1) Competitive Advantages
19+year experience in manufacturing motor gearbox
We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
Competitive Price
Product Performance: Low noise, High efficiency, Long lifespan
Prompt Delivery: 15 working days after payment
Small Orders Accepted
2) Main Products
-
Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,
- Customized worm and gear transmission machinery;
- Precise electromechanical motion module;
- Precise component and assembly of plastic and metal powder injection.
Our Services
- ODM & OEM
- Gearbox design and development
- Related technology support
- Micro drive gearbox custom solution
Packaging & Shipping
1) Packing Details
packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.
2) Shipping Details
samples will be shipped within 10 days;
batch order leading time according to the actual situation.
Certifications
Certifications
We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).
and more…
FAQ
FAQ
1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.
2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.
3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.
4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.
5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.
6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide.
7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.
8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.
9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.
10. How do contact us ?
Please send an inquiry
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Industrial, Household Appliances, Car, Camera |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Permanent Magnet |
Function: | Control |
Casing Protection: | Drip-Proof |
Number of Poles: | 2 |
Samples: |
US$ 90/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What types of feedback mechanisms are commonly integrated into gear motors for control?
Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:
1. Encoder Feedback:
An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:
- Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
- Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.
2. Hall Effect Sensors:
Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.
3. Current Sensors:
Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.
4. Temperature Sensors:
Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.
5. Hall Effect Limit Switches:
Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.
6. Resolver Feedback:
A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.
These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.
Can gear motors be used for precise positioning, and if so, what features enable this?
Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:
1. Gear Reduction:
One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.
2. High Resolution Encoders:
Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.
3. Closed-Loop Control:
Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.
4. Stepper Motors:
Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.
5. Servo Motors:
Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.
6. Motion Control Algorithms:
Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.
By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.
Can you explain the advantages of using gear motors in various mechanical systems?
Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:
1. Torque Amplification:
One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.
2. Speed Control:
Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.
3. Directional Control:
Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.
4. Efficiency and Power Transmission:
Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.
5. Compact and Space-Saving Design:
Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.
6. Durability and Reliability:
Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.
By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.
editor by CX 2024-05-08
China best AC Electric Motor AC Motor DC Motor DC Geared Motor 8830 with High Speed for Food Blender/Meat Grinder manufacturer
Product Description
PROFESSIONAL MANUFACTURER OF SINGLE-PHASE SERIES MOTOR /GEAR MOTOR
Power,Speed,Torque,Shaft ,Stator Lamination,Rotation And Installing Location
can be customized according to customer‘s requirements.
Product Description:
Product Name: | AC Single phase series motor |
Model No. | XJ8830 |
Brand: | HangZhouA |
Application: | for Grinder/High Speed Blender/Mixer/Lawn mower |
Starting Mode | Direct on-line Starting |
Rated Voltage: | 100/110/120/127/220/230/240 V |
Rated Frequency: | 50/60 Hz |
No-load Power: | 50-200W |
No-load Speed: | 13000-30000rpm |
Load Power: | 300-600W |
Load Speed: | 8000-16000rpm |
Rotation Direction: | CW/CCW |
Insulation Class: | A/E/B/F |
Protection Grade: | IP00 ~ IP68 |
Packing: | foam&carton,or accroding to customers’ specific requirements |
MOQ: | 500 pcs |
Delivery Time: | Depends on quantity from 2 weeks to 4 weeks. |
Payment Term: | T/T, L/C, D/P |
Remarks:
- The performances as above are just for reference only. We can adjust our motor specifications according to customer’s requirements.
- OEM & ODM are both available. Please feel free to contact us with your detailed requirements .
- If ask for quotation, please tell voltage, draft, input power, air flow at least, so we could quote fast.
Detail View:
2D-Drawning
Brief Introduction
HangZhou Xihu (West Lake) Dis. HangZhoua Electric Machinery Factory was established in 1997, it is located in Xihu (West Lake) Dis. District of HangZhou, ZHangZhoug Province.We have about 50,000 square CHINAMFG of the building and nearly 300 employees. In addition, the transportation around the factory is very convenient, it is close to the TongSan Highway, and is just 8 kilometers away from the HangZhou Airport.
Through years of accumulation and development, our factory is now a professional manufacturer of single-phase series motor and gear reducer motor.The application of our product covers many fields,it is mainly used in home kitchen appliances or electric tools, such as juicer, ice crusher, meat grinder, coffee bean grinder , lawn mower and so on.
Our factory has advanced universal motor production line, strong technical force, perfect testing means, products can be produced according to international and domestic standards, but also according to customer requirements or provided samples, drawings and other special design.Our work sticks to the principle of striving for existence by fine quality. Our products sell far all over the world.Our factory will, and as always, wholeheartedly serves broad old and new customers both at home and abroad. We are looking CHINAMFG to establishing business relationships with customers all over the world.
FAQ:
Q1: Are you a trade company or a manufacturer?
A1: HangZhou Xihu (West Lake) Dis. HangZhoua Motor Manufactory was established in 1997, we are a professional
manufacturer of single-phase series motor and gear motor.
Q2: How about sample and charge?
A2: Our sample policy stipulates that customers must pay for sample and express fee,but we could
return the sample and express fee based on certain order quantity. You can specify the express company you want that like DHL, or you can call your courier to pick up from our factory.
Q3: What is your payment terms?
A3: 1. We accept T/T, D/P, L/C at sight.
2. 30% deposit in advance and 70% balance before shipment.(Amount more than 3000USD)
Q4: How can we get detailed price?
A4: Please offer us detailed information of the product,specific packaging requirements and purchasing
quantity.
Q5: Is it possible to visit your factory
A5: Sure. But please kindly keep us posted a few days in advance. We need to check our schedule to see if we are available then.
Q6: How to guarantee punctual shipment for my order?
A6: We give priority to export orders and keep updating progress from production to delivery.
Q7: What about the after-sales service?
A7: Through emails, pictures or guest samples to confirm the real cause of the problem. If there is really
a product problem, we will redo with no charge.
Q8: What is your delivery date?
A8: The delivery date is about 20-30 days after receiving your deposit,it depends on the quantity you
order.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal |
---|---|
Speed: | High Speed |
Number of Stator: | Single-Phase |
Function: | Driving |
Casing Protection: | Open Type |
Number of Poles: | 2 |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
Are there environmental benefits to using gear motors in certain applications?
Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:
1. Energy Efficiency:
Gear motors can improve energy efficiency in various ways:
- Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
- Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.
2. Reduced Resource Consumption:
The use of gear motors can lead to reduced resource consumption and environmental impact:
- Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
- Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.
3. Noise Reduction:
Gear motors can contribute to a quieter and more environmentally friendly working environment:
- Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.
4. Precision and Control:
Gear motors offer enhanced precision and control, which can lead to environmental benefits:
- Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
- Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.
In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.
In which industries are gear motors commonly used, and what are their primary applications?
Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:
1. Robotics and Automation:
Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.
2. Automotive Industry:
The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.
3. Manufacturing and Machinery:
Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.
4. HVAC and Building Systems:
In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.
5. Marine and Offshore Industry:
Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.
6. Renewable Energy Systems:
The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.
7. Medical and Healthcare:
Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.
These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.
editor by CX 2024-03-27
China ZD Low Noise High Efficiency BLDC Brushless DC Planetary Geared Motor for Automatic Lawn Mower wholesaler
Product Description
Design Choice
ZD Chief has a extensive assortment of micro motor production lines in the sector, such as DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox and so forth. By way of technological innovation and customization, we assist you produce excellent software systems and give adaptable remedies for various industrial automation scenarios.
• Design Variety
Our expert income representive and complex crew will pick the appropriate model and transmission solutions for your use rely on your distinct parameters.
• Drawing Request
If you need to have a lot more solution parameters, catalogues, CAD or 3D drawings, make sure you get in touch with us.
• On Your Want
We can modify normal products or customize them to satisfy your particular needs.
Merchandise Parameters
Planetary Gear Motor
MOTOR Frame Measurement | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR Kind | Brush or Brushless |
OUTPUT Electricity | 10W / 15W / 25W / 40W / 60W / 90W / one hundred twenty W / 140W / 180W / 200W / 300W(Can Be Customized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm Round Shaft, D-Reduce Shaft, Key-Way Shaft (Can Be Tailored) |
Voltage type | 12V,24V,48V |
Equipment | Electric Brake / Encoder |
GEARBOX Frame Dimensions | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | 3.65K-392.98K |
Kind Of Pinion | GN Variety / GU Sort |
Kind Of Planetary Gear Motor
Other Merchandise
Organization Profile
/ Piece | |
1 Piece (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Type: | Z2 |
###
Customization: |
---|
###
MOTOR FRAME SIZE | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR TYPE | Brush or Brushless |
OUTPUT POWER | 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized) |
Voltage type | 12V,24V,48V |
Accessories | Electric Brake / Encoder |
GEARBOX FRAME SIZE | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | 3.65K-392.98K |
Type Of Pinion | GN Type / GU Type |
/ Piece | |
1 Piece (Min. Order) |
###
Application: | Universal, Industrial, Household Appliances |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Type: | Z2 |
###
Customization: |
---|
###
MOTOR FRAME SIZE | 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm |
MOTOR TYPE | Brush or Brushless |
OUTPUT POWER | 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized) |
OUTPUT SHAFT | 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized) |
Voltage type | 12V,24V,48V |
Accessories | Electric Brake / Encoder |
GEARBOX FRAME SIZE | 32 mm / 42mm / 52mm / 62mm /72mm/82mm |
Gear Ratio | 3.65K-392.98K |
Type Of Pinion | GN Type / GU Type |
The Basics of a Planetary Motor
A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.
Self-centering planetary gears
This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
High torque
Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
High efficiency
A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
High cost
In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.
editor by CX 2023-03-29
China Low Noise Long Life Time OEM Supply 25mmdiameter Geared 12V Brushless DC Motor with Planetary Gearbox wholesaler
Item Description
We are a skilled manufacuter for Dc motor, gear motor, brush and brushless motor considering that 2006.
Manufacturing unit
HangZhou CZPT Electronic CO.,LTD. are mainly engaged in developing, generating and advertising large-efficiency market rotary encoder,potentiometer,switches,DC motor.handed ISO9001, ISO14001, ISO/TS16949.
With the sturdy R&D staff ,our firm have obtained numerous proprietary intellectual house legal rights,seven application copyrights and 1 patent have been reached . Three patents for invention are applied on the way.
/ Piece | |
1,000 Pieces (Min. Order) |
###
Application: | Household Appliances |
---|---|
Operating Speed: | High Speed |
Excitation Mode: | Compound |
Function: | Driving |
Casing Protection: | Explosion-Proof Type |
Number of Poles: | 2 |
###
Samples: |
US$ 0.1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
/ Piece | |
1,000 Pieces (Min. Order) |
###
Application: | Household Appliances |
---|---|
Operating Speed: | High Speed |
Excitation Mode: | Compound |
Function: | Driving |
Casing Protection: | Explosion-Proof Type |
Number of Poles: | 2 |
###
Samples: |
US$ 0.1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
Benefits of a Planetary Motor
A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Self-centering planet gears ensure a symmetrical force distribution
A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.
Metal gears
A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Encoder
The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.
Durability
One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Cost
The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.
editor by CX 2023-03-28
China High Quality DC Gear Motor 3V 6V Planetary Geared DC Motor motor driver
Product Description
Solution Description
1. This motor use Pure Copper Wire, Not Aluminium Wire, So the motor is far more reputable and lengthy life span.
2. This motor use ball bearing, far more stable and safer when motor operating.
3. Voltage :1.5V-36V
4.Rated Speed :1000rpm-30000rpm
five.Common Application:Message equipments, digital toys, house programs, digital lock, digital camera, automatic merchandise
6. Insulation Course: A B F H
Goods code | voltage | NO load | at highest | stall | ||||||
functioning selection | nomal | velocity(RPM) | Present(A) | speed(RPM) | Present(A) | torque(greatupmotor) | output(w) | torque(greatupmotor) | Present(A) | |
S540CG-7522 | three-7.5V | 6V | 17500 | one.eight | 14510 | 9.7 | 246 | 37 | 1442 | 48.five |
S540CG-5639 | six-15V | 12V | 19150 | .ninety five | 16300 | 5.four | 265 | 44 | 1774 | 31 |
S540AG-16380 | 12-24V | 7.5V | 12000 | .05 | 9200 | .fifteen | 60 | .6 | 240 | .five |
S545AG-18150 | twelve-24V | 24V | 5550 | .fifteen | 4450 | .55 | 168 | seven.7 | 840 | 2.17 |
S545AG-2775 | three-12V | 12V | 5400 | .21 | 4400 | 1 | 155 | seven.05 | 860 | four.4 |
S545AG-5622 | 12V | 20500 | one.one | 17100 | five.five | 242 | 42.five | 1464 | 28 |
ABOUT US
Greatupmotor group was set up in 2006.we constantly emphasis on micro-motors for house electrical equipment and industry appliance since setting up.at the moment we have 2 skilled micro-motor factories in China which severally situated in HangZhou city and HangZhou metropolis.it has an region of 25,000 square meters vegetation and more than three hundred personnel, annual output is 3 million pcs and has 5 million pcs annual producing potential.right after a number of several years improvement,we had created a excellent status in the industry and acquired far more and much more customers’ trust in the planet.
We started from shaded pole motors at beginning, up to now,our item included of shaded pole motors,synchronous motors,stepping motors ,capacitor motors, BLDC motors, DC motors and compressors. Our merchandise are commonly used for producing fridges, freezers, micro-wave ovens, air heaters, air exhausters, ventilators,ovens, air filter, therapeutic massage devices and many other equipments.
As a realiable good quality guaranty,Ritscher has complete R&D departement,QC section,creating office,obtain office and many others. has best creating equipment like Aluminum diecasting, Zinc diecasting, Sheet metallic stamping, Plastic injection molding and so on. also test/ detection gadget like multiplex temp measuring gadget, overall performance parameter inspection gadget, Phenol peptide answer pinhole tester,Anechoic place and so forth.
Endeavoring to offer the greatest product and services to consumers,we usually do the most work to turn into an excellent manufacturer of micro motors.
Greatupmotor is often inclined to create honest enterprise connection with friends from all over the planet.
Welcome get in touch with with us!
Just take Greatupmotor ,appreciate present day lifestyle!
Our organization FAQ for you
(1) Q: What variety motors you can give?
A:For now,we primarily give Kitchen area Hood Motor,DC Motor,Equipment Motor,Admirer Motor Fridge Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.
(2) Q: Is it achievable to visit your factory
A: Certain. But remember to kindly hold us posted a couple of times in progress. We need to have to check our
plan to see if we are offered then.
(3) Q: Can I get some samples
A: It depends. If only a few samples for private use or alternative, I am frightened it will
be challenging for us to offer, due to the fact all of our motors are custom manufactured and no inventory
offered if there is no even more demands. If just sample tests before the official buy and
our MOQ, price tag and other terms are satisfactory, we’d enjoy to supply samples.
(4) Q: Is there a MOQ for your motors?
A: Indeed. The MOQ is in between 1000~10,000pcs for various types following sample acceptance.
But it truly is also alright for us to accept smaller lots like a couple of dozens, hundreds or countless numbers
For the preliminary 3 orders soon after sample acceptance.For samples, there is no MOQ requirement. But the less the much better (like no far more than 5pcs) on condition that the amount is enough in circumstance any changes necessary soon after preliminary screening.
/ Piece | |
100 Pieces (Min. Order) |
###
Application: | Automation Equipment, Audio and Video Equipment, Moving Machinery |
---|---|
Operating Speed: | Adjust Speed |
Power Source: | DC Motor |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 2 |
###
Samples: |
US$ 1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
###
Products code | voltage | NO load | at maximum | stall | ||||||
operating range | nomal | speed(RPM) | Current(A) | speed(RPM) | Current(A) | torque(greatupmotor.en.made-in-china.com) | output(w) | torque(greatupmotor.en.made-in-china.com) | Current(A) | |
S540CG-7522 | 3-7.5V | 6V | 17500 | 1.8 | 14510 | 9.7 | 246 | 37 | 1442 | 48.5 |
S540CG-5639 | 6-15V | 12V | 19150 | 0.95 | 16300 | 5.4 | 265 | 44 | 1774 | 31 |
S540AG-16380 | 12-24V | 7.5V | 12000 | 0.05 | 9200 | 0.15 | 60 | 0.6 | 240 | 0.5 |
S545AG-18150 | 12-24V | 24V | 5550 | 0.15 | 4450 | 0.55 | 168 | 7.7 | 840 | 2.17 |
S545AG-2775 | 3-12V | 12V | 5400 | 0.21 | 4400 | 1 | 155 | 7.05 | 860 | 4.4 |
S545AG-5622 | 12V | 20500 | 1.1 | 17100 | 5.5 | 242 | 42.5 | 1464 | 28 |
/ Piece | |
100 Pieces (Min. Order) |
###
Application: | Automation Equipment, Audio and Video Equipment, Moving Machinery |
---|---|
Operating Speed: | Adjust Speed |
Power Source: | DC Motor |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 2 |
###
Samples: |
US$ 1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
###
Products code | voltage | NO load | at maximum | stall | ||||||
operating range | nomal | speed(RPM) | Current(A) | speed(RPM) | Current(A) | torque(greatupmotor.en.made-in-china.com) | output(w) | torque(greatupmotor.en.made-in-china.com) | Current(A) | |
S540CG-7522 | 3-7.5V | 6V | 17500 | 1.8 | 14510 | 9.7 | 246 | 37 | 1442 | 48.5 |
S540CG-5639 | 6-15V | 12V | 19150 | 0.95 | 16300 | 5.4 | 265 | 44 | 1774 | 31 |
S540AG-16380 | 12-24V | 7.5V | 12000 | 0.05 | 9200 | 0.15 | 60 | 0.6 | 240 | 0.5 |
S545AG-18150 | 12-24V | 24V | 5550 | 0.15 | 4450 | 0.55 | 168 | 7.7 | 840 | 2.17 |
S545AG-2775 | 3-12V | 12V | 5400 | 0.21 | 4400 | 1 | 155 | 7.05 | 860 | 4.4 |
S545AG-5622 | 12V | 20500 | 1.1 | 17100 | 5.5 | 242 | 42.5 | 1464 | 28 |
How to Select a Gear Motor
A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.
Angular geared motors
Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Planetary gearboxes
Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Hydraulic gear motors
Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Croise motors
There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.
editor by CX 2023-03-27
China Bringsmart A58SW-555 Worm Geared DC Motor With High Torque Self-Lock Electric Car Parts DC Motor Kit motor electric
Guarantee: Other
Model Variety: A58SW-555
Use: BOAT, Auto, Electric Bicycle, Admirer, Home Appliance, Cosmetic instrument, Sensible Home
Sort: Gear MOTOR
Torque: 2.5-60KG.CM
Design: Long lasting Magnet
Commutation: Brush
Safeguard Attribute: Entirely Enclosed
Velocity(RPM): twelve-470RPM
Ongoing Existing(A): .twenty five-1.5A
Effectiveness: IE two
Packaging Information: Internal Packaging: Substantial Good quality Bubble bagsOutside packing: Secure Kraft Cartons
Port: HangZhou
Brand Identify | BringSmart |
Main Item | DC Motor, AC Motor, DC Linear Actuator view a lot more |
OEM | Accepted |
Delivery Time | Within 15 times |
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by czh 2023-02-17
China 12mm diamrter 5v high torque dc electric motor geared micro dc speed reduction motor manufacturer
Warranty: Other
Model Number: GM12-N20VA-1:one hundred
Usage: BOAT, Auto, Electrical Bicycle, Supporter, Property Appliance, Beauty instrument, Smart House
Sort: Equipment MOTOR
Torque: .15kg.cm
Design: Everlasting Magnet
Commutation: Brush
Shield Characteristic: Totally Enclosed
Velocity(RPM): 150r/min -No load
Ongoing Current(A): .26a
Effectiveness: IE 4
Software: Computerized Merchandise
Motor variety: PMDC Brushed Motor
Rated Voltage: 2.5-12V DC
Keywords: Little Gear Motor
Colour: Silver
Dimensions: twelve*24mm
Typical Programs: Instantly Machine
Electricity: .31W
Diameter: 12mm
Gears: Metal Spur Gears
Packaging Particulars: CZPT unique pacakge
Solution Photographs Merchandise Paramenters Packaging & Shipping
GM12-N20VA | ||
Case Pack(pcs) | Carton Dimension | Carton Gross Fat |
840 | 41.5*34.5*eighteen.5 CM | 10.5kg |
Other Apps: | |
Business Devices: | ATM, Copiers and Scanners, Forex Handling, 1In Bore Solitary Split Black Oxide Shaft Collar custom 1 parts clamping collar Position of Sale, Printers, Vending Machines. |
Food and Beverage: | Beverage Dispensing, Hand Blenders, Blenders, Mixers, Espresso Devices, Meals Processors, Juicers, Fryers, CZPT injection molding machine aluminum established screw shaft collars with a Hexagonal bore of twelve Ice Makers, Soy Bean MilkMakers. |
Camera and Optical: | Video, Cameras, Projectors. |
Lawn and Yard: | Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers. |
Medical | Mesotherapy,insulin pump,clinic mattress,Urine Analyzer, One particular Piece Split Clamping Steel Threaded Shaft Collar |
The Basics of a Planetary Motor
A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.
Self-centering planetary gears
This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
High torque
Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
High efficiency
A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
High cost
In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.
editor by czh2023-02-15
China 86mm Width BLDC Motor with Planetary / Worm Gearbox / Brake / Encoder / Controller Brushless DC Gear Geared Motor Used for Sliding Door with Customized Service car motor
Merchandise Description
86mm Width BLDC Motor with Planetary / Worm Gearbox / Brake / Encoder / Controller Brushless Dc Gear Geared Motor Utilized for Sliding Door with Custom-made Support
Item Description
Solution Title: Brushless DC Motor
Amount of Stage: 3 Phase
Amount of Poles: 4 Poles /8 Poles /ten Poles
Rated Voltage: 12v /24v /36v /48v /310v
Rated Speed: 3000rpm /4000rpm /or personalized
Rated Torque: Personalized
Rated Present: Custom-made
Rated Electricity: 23w~2500W
Jkongmotor has a broad range of micro motor manufacturing traces in the sector, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Equipment Motor, Planetary Gearbox and many others. Through technological innovation and customization, we assist you generate outstanding application methods and provide adaptable remedies for a variety of industrial automation situations.
86mm 48V Dc Brushless Motor Parameters:
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Period | Stage | 3 | ||||
Variety Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Velocity | Rpm | 3000 | ||||
Rated Torque | N.m | .35 | .7 | one.05 | 1.four | 2.one |
Rated Existing | Amps | three | six.three | nine | 11.five | 18 |
Rated Energy | W | one hundred ten | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | three.15 | four.2 | 6.3 |
Peak Present | Amps | nine | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | thirteen.7 | thirteen | 13.5 | 13.7 | thirteen.five |
Torque Constant | N.m/A | .13 | .12 | .thirteen | .13 | .13 |
Rotor Inertia | g.cm2 | four hundred | 800 | 1200 | 1600 | 2400 |
Human body Size | mm | 71 | 84.five | ninety eight | 111.five | 138.5 |
Excess weight | Kg | one.5 | 1.9 | two.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Diploma of Defense | IP30 | |||||
Storage Temperature | -twenty five~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Functioning Humidity | 85% RH or under (no condensation) | |||||
Operating Atmosphere | Outdoor (no direct sunlight), no corrosive gasoline, no flammable fuel, no oil mist, no dust | |||||
Altitude | 1000 meters or considerably less |
86mm Gearbox Parameters:
Gearbox Electrical Specification: | ||||||
Phase | One phase | Two phase | Three stage | |||
Ratio | 3,4,5,8,ten | 12,fifteen,16,twenty,twenty five,32,forty,sixty four,a hundred | 64,80,100,120,125,a hundred and sixty,200,256,320,512,one thousand | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | sixty five | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Effectiveness (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Excess weight (Kg) | 3.2 | 3.nine | 4.8 | |||
Typical usefui life (h) | >10000 | |||||
Lubricating method | Long-phrase | |||||
Rotation route | Input/Output syntropy | |||||
Defense degree | IP65 |
86mm Planetary Gearbox Parameters:
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specs | |||
Module | 1 | ||
No. of tooth | twelve | 13 | 22 |
Stress angle | 20° | ||
Hole diameter | 10 tooth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | one/5.31 1/19 1/30 1/74 1/111 | one/3.55 1/13 1/fifty |
Gearbox Specs: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Performance | L (mm) | Excess weight (g) |
one/3.55 1/5.31 1/6.six | 1/3.55 1/5.31 1/6.6 | eight N.m Max | 12 N.m | .9 | 55.7±0.5 | 1100 |
one/13 1/19 1/23 | 1/twelve.57 1/eighteen.82 1/23.four | thirty N.m Max | 45 N.m | 81% | seventy two.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | .73 | 72.2±0.five | 1500 |
one/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction Motor Max. enter velocity: <4000rpm Operating temperature range: -15ºC ~ +80ºC |
Other Brushless Dc Motor
42mm 24V Brushless DC Motor Parameters:
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Variety Of Period | Stage | 3 | |||
Quantity Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | .0625 | .125 | .185 | .25 |
Peak Existing | Amps | 1.8 | 3.3 | 4.8 | six.three |
Rated Electricity | W | 26 | 52.5 | seventy seven.5 | a hundred and five |
Peak Torque | N.m | .19 | .38 | .56 | .seventy five |
Peak Recent | Amps | 5.4 | 10.six | fifteen.five | 20 |
Back E.M.F | V/Krpm | four.1 | four.2 | 4.three | 4.three |
Torque Continual | N.m/A | .039 | .04 | .041 | .041 |
Rotor Inertia | g.cm2 | 24 | 48 | seventy two | ninety six |
Physique Duration | mm | ||||
Excess weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Working Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or under (no condensation) | ||||
Operating Environment | Outdoor (no immediate sunlight), no corrosive gas, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
57mm 36V Brushless DC Motor Parameters:
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Variety Of Section | Section | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Pace | Rpm | 4000 | ||||
Rated Torque | N.m | .055 | .eleven | .22 | .33 | .forty four |
Rated Existing | Amps | 1.two | two | 3.6 | five.3 | six.eight |
Rated Energy | W | 23 | forty six | 92 | 138 | 184 |
Peak Torque | N.m | .16 | .33 | .66 | one | one.32 |
Peak Present | Amps | three.five | six.eight | 11.5 | 15.5 | twenty.5 |
Back E.M.F | V/Krpm | 7.eight | seven.7 | seven.four | 7.3 | seven.one |
Torque Consistent | N.m/A | .074 | .073 | .07 | .07 | .068 |
Rotor Inertia | g.cm2 | 30 | seventy five | 119 | 173 | 230 |
Entire body Size | mm | 37 | forty seven | 67 | 87 | 107 |
Weight | Kg | .33 | .44 | .75 | one | one.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Diploma of Security | IP30 | |||||
Storage Temperature | -twenty five~+70ºC | |||||
Running Temperature | -fifteen~+50ºC | |||||
Working Humidity | 85% RH or underneath (no condensation) | |||||
Working Setting | Outdoor (no direct sunlight), no corrosive gasoline, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or considerably less |
60mm 48V Brushless DC Motor Parameters:
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Period | Stage | 3 | |||
Variety Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Pace | Rpm | 3000 | |||
Rated Torque | N.m | .three | .six | .nine | one.two |
Rated Existing | Amps | 2.eight | 5.two | 7.5 | 9.five |
Rated Energy | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | .nine | 1.eight | two.seven | three.6 |
Peak Current | Amps | 8.four | fifteen.six | 22.five | 28.5 |
Back again E.M.F | V/Krpm | twelve.1 | twelve.6 | twelve.4 | 13.3 |
Torque Constant | N.m/A | .116 | .twelve | .118 | .127 |
Rotor Inertia | kg.cm2 | .24 | .forty eight | .72 | .96 |
Entire body Length | mm | seventy eight | ninety nine | 120 | 141 |
Excess weight | Kg | .eighty five | 1.twenty five | one.sixty five | two.05 |
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Diploma of Defense | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Running Temperature | -15~+50ºC | ||||
Operating Humidity | 85% RH or under (no condensation) | ||||
Operating Atmosphere | Outdoor (no direct sunlight), no corrosive gas, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or much less |
80mm 48V BLDC Motor Parameters:
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Section | Stage | 3 | |||
Variety Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | .35 | .7 | one.05 | 1.four |
Rated Current | Amps | 3 | five.5 | eight | 10.five |
Rated Energy | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | two.one | three.fifteen | 4.two |
Peak Current | Amps | nine | sixteen.five | 24 | 31.5 |
Again E.M.F | V/Krpm | 13.five | 13.three | 13.1 | thirteen |
Torque Continuous | N.m/A | .thirteen | .127 | .126 | .124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Duration | mm | seventy eight | ninety eight | 118 | 138 |
Bodyweight | Kg | 1.4 | two | 2.6 | 3.two |
Sensor | Honeywell | ||||
Insulation Course | B | ||||
Degree of Defense | IP30 | ||||
Storage Temperature | -twenty five~+70ºC | ||||
Running Temperature | -fifteen~+50ºC | ||||
Functioning Humidity | 85% RH or beneath (no condensation) | ||||
Operating Setting | Outdoor (no immediate sunlight), no corrosive gasoline, no flammable fuel, no oil mist, no dust | ||||
Altitude | 1000 meters or much less |
110mm 310V Brushless Motor Parameters:
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Variety Of Section | Period | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Velocity | Rpm | 3400 | |||
Rated Torque | N.m | two.38 | three.3 | five | 6.6 |
Rated Present | Amps | .five | .6 | .8 | 1 |
Rated Electricity | KW | .75 | one.03 | 1.57 | two.07 |
Back again E.M.F | V/Krpm | ninety one.1 | 91.one | 91.one | 88.6 |
Torque Continual | N.m/A | .87 | .87 | .87 | .845 |
Entire body Length | mm | 130 | a hundred and fifty five | a hundred and eighty | 205 |
Sensor | Honeywell | ||||
Insulation Course | H |
Stepping Motor Customized
Planetary Gearbox Kind:
Thorough Pictures
Cnc Motor Kits Brushless dc Motor with Brake
Brushless Dc Motor with Planetary Gearbox Bldc Motor with Encoder
Brushless Dc Motor Brushed Dc Motor Hybrid Stepper Motor
Organization Profile
HangZhou CZPT Co., Ltd was a substantial technologies sector zone in HangZhou, china. Our products utilised in many types of machines, these kinds of as 3d printer CNC machine, health care gear, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other firms to establish prolonged-term cooperation with us.
Company spirit of sincere and excellent track record, received the recognition and support of the broad masses of clients, at the same time with the domestic and overseas suppliers close group of interests, the organization entered the stage of stage of benign development, laying a sound basis for the strategic purpose of recognizing only really the sustainable growth of the company.
Equipments Display:
Manufacturing Circulation:
Package deal:
Certification:
US $10-50 / Piece | |
10 Pieces (Min. Order) |
###
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) need to confirm the cost with seller
|
---|
###
Customization: |
Available
|
---|
###
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Speed | Rpm | 3000 | ||||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 | 2.1 |
Rated Current | Amps | 3 | 6.3 | 9 | 11.5 | 18 |
Rated Power | W | 110 | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 | 6.3 |
Peak Current | Amps | 9 | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | 13.7 | 13 | 13.5 | 13.7 | 13.5 |
Torque Constant | N.m/A | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 |
Rotor Inertia | g.cm2 | 400 | 800 | 1200 | 1600 | 2400 |
Body Length | mm | 71 | 84.5 | 98 | 111.5 | 138.5 |
Weight | Kg | 1.5 | 1.9 | 2.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Gearbox Electrical Specification: | ||||||
Stage | One stage | Two stage | Three stage | |||
Ratio | 3,4,5,8,10 | 12,15,16,20,25,32,40,64,100 | 64,80,100,120,125,160,200,256,320,512,1000 | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | 65 | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Efficiency (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Weight (Kg) | 3.2 | 3.9 | 4.8 | |||
Average usefui life (h) | >10000 | |||||
Lubricating system | Long-term | |||||
Rotation direction | Input/Output syntropy | |||||
Protection level | IP65 |
###
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specifications | |||
Module | 1 | ||
No. of teeth | 12 | 13 | 22 |
Pressure angle | 20° | ||
Hole diameter | 10 teeth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | 1/5.31 1/19 1/30 1/74 1/111 | 1/3.55 1/13 1/50 |
###
Gearbox Specifications: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Efficiency | L (mm) | Weight (g) |
1/3.55 1/5.31 1/6.6 | 1/3.55 1/5.31 1/6.6 | 8 N.m Max | 12 N.m | 0.9 | 55.7±0.5 | 1100 |
1/13 1/19 1/23 | 1/12.57 1/18.82 1/23.4 | 30 N.m Max | 45 N.m | 81% | 72.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | 0.73 | 72.2±0.5 | 1500 |
1/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction; Motor Max. input speed: <4000rpm; Operating temperature range: -15ºC ~ +80ºC |
###
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | 0.0625 | 0.125 | 0.185 | 0.25 |
Peak Current | Amps | 1.8 | 3.3 | 4.8 | 6.3 |
Rated Power | W | 26 | 52.5 | 77.5 | 105 |
Peak Torque | N.m | 0.19 | 0.38 | 0.56 | 0.75 |
Peak Current | Amps | 5.4 | 10.6 | 15.5 | 20 |
Back E.M.F | V/Krpm | 4.1 | 4.2 | 4.3 | 4.3 |
Torque Constant | N.m/A | 0.039 | 0.04 | 0.041 | 0.041 |
Rotor Inertia | g.cm2 | 24 | 48 | 72 | 96 |
Body Length | mm | ||||
Weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Speed | Rpm | 4000 | ||||
Rated Torque | N.m | 0.055 | 0.11 | 0.22 | 0.33 | 0.44 |
Rated Current | Amps | 1.2 | 2 | 3.6 | 5.3 | 6.8 |
Rated Power | W | 23 | 46 | 92 | 138 | 184 |
Peak Torque | N.m | 0.16 | 0.33 | 0.66 | 1 | 1.32 |
Peak Current | Amps | 3.5 | 6.8 | 11.5 | 15.5 | 20.5 |
Back E.M.F | V/Krpm | 7.8 | 7.7 | 7.4 | 7.3 | 7.1 |
Torque Constant | N.m/A | 0.074 | 0.073 | 0.07 | 0.07 | 0.068 |
Rotor Inertia | g.cm2 | 30 | 75 | 119 | 173 | 230 |
Body Length | mm | 37 | 47 | 67 | 87 | 107 |
Weight | Kg | 0.33 | 0.44 | 0.75 | 1 | 1.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.3 | 0.6 | 0.9 | 1.2 |
Rated Current | Amps | 2.8 | 5.2 | 7.5 | 9.5 |
Rated Power | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | 0.9 | 1.8 | 2.7 | 3.6 |
Peak Current | Amps | 8.4 | 15.6 | 22.5 | 28.5 |
Back E.M.F | V/Krpm | 12.1 | 12.6 | 12.4 | 13.3 |
Torque Constant | N.m/A | 0.116 | 0.12 | 0.118 | 0.127 |
Rotor Inertia | kg.cm2 | 0.24 | 0.48 | 0.72 | 0.96 |
Body Length | mm | 78 | 99 | 120 | 141 |
Weight | Kg | 0.85 | 1.25 | 1.65 | 2.05 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 |
Rated Current | Amps | 3 | 5.5 | 8 | 10.5 |
Rated Power | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 |
Peak Current | Amps | 9 | 16.5 | 24 | 31.5 |
Back E.M.F | V/Krpm | 13.5 | 13.3 | 13.1 | 13 |
Torque Constant | N.m/A | 0.13 | 0.127 | 0.126 | 0.124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Length | mm | 78 | 98 | 118 | 138 |
Weight | Kg | 1.4 | 2 | 2.6 | 3.2 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Speed | Rpm | 3400 | |||
Rated Torque | N.m | 2.38 | 3.3 | 5 | 6.6 |
Rated Current | Amps | 0.5 | 0.6 | 0.8 | 1 |
Rated Power | KW | 0.75 | 1.03 | 1.57 | 2.07 |
Back E.M.F | V/Krpm | 91.1 | 91.1 | 91.1 | 88.6 |
Torque Constant | N.m/A | 0.87 | 0.87 | 0.87 | 0.845 |
Body Length | mm | 130 | 155 | 180 | 205 |
Sensor | Honeywell | ||||
Insulation Class | H |
US $10-50 / Piece | |
10 Pieces (Min. Order) |
###
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
###
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Excited |
###
Samples: |
US$ 20/Piece
1 Piece(Min.Order) need to confirm the cost with seller
|
---|
###
Customization: |
Available
|
---|
###
Specification | Unit | Model | ||||
JK86BLS58 | JK86BLS71 | JK86BLS84 | JK86BLS98 | JK86BLS125 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 8 | ||||
Rated Voltage | VDC | 48 | ||||
Rated Speed | Rpm | 3000 | ||||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 | 2.1 |
Rated Current | Amps | 3 | 6.3 | 9 | 11.5 | 18 |
Rated Power | W | 110 | 220 | 330 | 440 | 660 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 | 6.3 |
Peak Current | Amps | 9 | 19 | 27 | 35 | 54 |
Back E.M.F | V/Krpm | 13.7 | 13 | 13.5 | 13.7 | 13.5 |
Torque Constant | N.m/A | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 |
Rotor Inertia | g.cm2 | 400 | 800 | 1200 | 1600 | 2400 |
Body Length | mm | 71 | 84.5 | 98 | 111.5 | 138.5 |
Weight | Kg | 1.5 | 1.9 | 2.3 | 2.7 | 4 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Gearbox Electrical Specification: | ||||||
Stage | One stage | Two stage | Three stage | |||
Ratio | 3,4,5,8,10 | 12,15,16,20,25,32,40,64,100 | 64,80,100,120,125,160,200,256,320,512,1000 | |||
Length (mm) | L2 | L3 | L2 | L3 | L2 | L3 |
153 | 65 | 177 | 89 | 201 | 113 | |
Max.Input Rpm (Rpm) | 6000 | 6000 | 6000 | |||
Max.Radial load (N) | 550 | 550 | 550 | |||
Max.Shaft axial load (N) | 500 | 500 | 500 | |||
Efficiency (%) | 96 | 94 | 90 | |||
Backlash arcmin (arcmin) | ≤8 | ≤10 | ≤12 | |||
Noise (dB) | ≤60 | ≤60 | ≤60 | |||
Weight (Kg) | 3.2 | 3.9 | 4.8 | |||
Average usefui life (h) | >10000 | |||||
Lubricating system | Long-term | |||||
Rotation direction | Input/Output syntropy | |||||
Protection level | IP65 |
###
Suitable brushless dc motor shaft | |||
Motor Shaft Pinion Specifications | |||
Module | 1 | ||
No. of teeth | 12 | 13 | 22 |
Pressure angle | 20° | ||
Hole diameter | 10 teeth pinion | Φ7H7 | Φ8H7 |
Reduction ratio | 1/6.6 1/23 1/26 1/37 1/92 1/138 | 1/5.31 1/19 1/30 1/74 1/111 | 1/3.55 1/13 1/50 |
###
Gearbox Specifications: | ||||||
Reduction ratio | Exact reduction ratio | Rated tolerance torque | Max momentary tolerance torque | Efficiency | L (mm) | Weight (g) |
1/3.55 1/5.31 1/6.6 | 1/3.55 1/5.31 1/6.6 | 8 N.m Max | 12 N.m | 0.9 | 55.7±0.5 | 1100 |
1/13 1/19 1/23 | 1/12.57 1/18.82 1/23.4 | 30 N.m Max | 45 N.m | 81% | 72.2±0.5 | 1500 |
1/26 1/30 1/37 | 1/26.05 1/30.08 1/37.4 | 60 N.m Max | 90 N.m | 0.73 | 72.2±0.5 | 1500 |
1/50 1/74 1/92 1/111 1/138 | 1/49.62 1/74.28 1/92.37 1/111.2 1/138.28 | 80 N.m Max | 120 N.m | 66% | 88.5±0.5 | 1880 |
Input & output same rotation direction; Motor Max. input speed: <4000rpm; Operating temperature range: -15ºC ~ +80ºC |
###
Specification | Unit | Model | |||
JK42BLS01 | JK42BLS02 | JK42BLS03 | JK42BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 24 | |||
Rated Speed | Rpm | 4000 | |||
Rated Torque | N.m | 0.0625 | 0.125 | 0.185 | 0.25 |
Peak Current | Amps | 1.8 | 3.3 | 4.8 | 6.3 |
Rated Power | W | 26 | 52.5 | 77.5 | 105 |
Peak Torque | N.m | 0.19 | 0.38 | 0.56 | 0.75 |
Peak Current | Amps | 5.4 | 10.6 | 15.5 | 20 |
Back E.M.F | V/Krpm | 4.1 | 4.2 | 4.3 | 4.3 |
Torque Constant | N.m/A | 0.039 | 0.04 | 0.041 | 0.041 |
Rotor Inertia | g.cm2 | 24 | 48 | 72 | 96 |
Body Length | mm | ||||
Weight | Kg | ||||
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | ||||
JK57BLS005 | JK57BLS01 | JK57BLS02 | JK57BLS03 | JK57BLS04 | ||
Number Of Phase | Phase | 3 | ||||
Number Of Poles | Poles | 4 | ||||
Rated Voltage | VDC | 36 | ||||
Rated Speed | Rpm | 4000 | ||||
Rated Torque | N.m | 0.055 | 0.11 | 0.22 | 0.33 | 0.44 |
Rated Current | Amps | 1.2 | 2 | 3.6 | 5.3 | 6.8 |
Rated Power | W | 23 | 46 | 92 | 138 | 184 |
Peak Torque | N.m | 0.16 | 0.33 | 0.66 | 1 | 1.32 |
Peak Current | Amps | 3.5 | 6.8 | 11.5 | 15.5 | 20.5 |
Back E.M.F | V/Krpm | 7.8 | 7.7 | 7.4 | 7.3 | 7.1 |
Torque Constant | N.m/A | 0.074 | 0.073 | 0.07 | 0.07 | 0.068 |
Rotor Inertia | g.cm2 | 30 | 75 | 119 | 173 | 230 |
Body Length | mm | 37 | 47 | 67 | 87 | 107 |
Weight | Kg | 0.33 | 0.44 | 0.75 | 1 | 1.25 |
Sensor | Honeywell | |||||
Insulation Class | B | |||||
Degree of Protection | IP30 | |||||
Storage Temperature | -25~+70ºC | |||||
Operating Temperature | -15~+50ºC | |||||
Working Humidity | 85% RH or below (no condensation) | |||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | |||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK60BLS01 | JK60BLS02 | JK60BLS03 | JK60BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.3 | 0.6 | 0.9 | 1.2 |
Rated Current | Amps | 2.8 | 5.2 | 7.5 | 9.5 |
Rated Power | W | 94 | 188 | 283 | 377 |
Peak Torque | N.m | 0.9 | 1.8 | 2.7 | 3.6 |
Peak Current | Amps | 8.4 | 15.6 | 22.5 | 28.5 |
Back E.M.F | V/Krpm | 12.1 | 12.6 | 12.4 | 13.3 |
Torque Constant | N.m/A | 0.116 | 0.12 | 0.118 | 0.127 |
Rotor Inertia | kg.cm2 | 0.24 | 0.48 | 0.72 | 0.96 |
Body Length | mm | 78 | 99 | 120 | 141 |
Weight | Kg | 0.85 | 1.25 | 1.65 | 2.05 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK80BLS01 | JK80BLS02 | JK80BLS03 | JK80BLS04 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 4 | |||
Rated Voltage | VDC | 48 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 0.35 | 0.7 | 1.05 | 1.4 |
Rated Current | Amps | 3 | 5.5 | 8 | 10.5 |
Rated Power | W | 110 | 220 | 330 | 440 |
Peak Torque | N.m | 1.05 | 2.1 | 3.15 | 4.2 |
Peak Current | Amps | 9 | 16.5 | 24 | 31.5 |
Back E.M.F | V/Krpm | 13.5 | 13.3 | 13.1 | 13 |
Torque Constant | N.m/A | 0.13 | 0.127 | 0.126 | 0.124 |
Rotor Inertia | g.cm2 | 210 | 420 | 630 | 840 |
Body Length | mm | 78 | 98 | 118 | 138 |
Weight | Kg | 1.4 | 2 | 2.6 | 3.2 |
Sensor | Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH or below (no condensation) | ||||
Working Environment | Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust | ||||
Altitude | 1000 meters or less |
###
Specification | Unit | Model | |||
JK110BLS050 | JK110BLS75 | JK110BLS100 | JK110BLS125 | ||
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Speed | Rpm | 3400 | |||
Rated Torque | N.m | 2.38 | 3.3 | 5 | 6.6 |
Rated Current | Amps | 0.5 | 0.6 | 0.8 | 1 |
Rated Power | KW | 0.75 | 1.03 | 1.57 | 2.07 |
Back E.M.F | V/Krpm | 91.1 | 91.1 | 91.1 | 88.6 |
Torque Constant | N.m/A | 0.87 | 0.87 | 0.87 | 0.845 |
Body Length | mm | 130 | 155 | 180 | 205 |
Sensor | Honeywell | ||||
Insulation Class | H |
How to Select a Gear Motor
A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.
Angular geared motors
Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Planetary gearboxes
Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Hydraulic gear motors
Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Croise motors
There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.
editor by czh 2023-01-09