Tag Archives: gear with motors

China Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor vacuum pump electric

Product Description

 

Product Parameters

Model No.: KM-12FN30-298-571

Size details:
Motor Diameter: φ12mm
Gear box length : 10mm
Shaft length: customization
Specifications:
Rated voltage: DC 2.5V
Direction of rotation: CW/CCW 
No load speed: 100rpm
No load current: 0.04A 
Rated torque: 540g.cm 
Rated speed: 80rpm

All technical data can custom made for different application.

Customized items:
DC motor, gearbox motor, vibration motor, automotive motor.
Accessories offered like encoder, gear,worm, wire, connector.
Ball bearing or Oil-impregnated bearing.
Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
Metal end cap or plastic end cap.
 Precious metal brush/ carbon brush.
Technical data.

Detailed Photos

Application

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
 

2.What’s the lead time for samples or mass production?

Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
 

3.Could you mind sending the quotation for this motor?

For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
 

4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?

We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5.Are your motors certificated with UL, CB Tüv, CE?

All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor   vacuum pump electricChina Professional CHINAMFG Gear Motor 12mm 3V-6V Small Electric Reduction Motors with Gearbox Motor   vacuum pump electric
editor by CX 2024-05-14

China Best Sales Mini Micro Metal Brush Robot 12mm 6V Small Electric Gear Motors with Dual Shaft for Car Conversion Kit motorbase

Product Description

Below are only some typical models, for more specification or a customed motor, pls contact us.

 

12ZYJ DC Gear Motor
Basic Info
Item Data
Tem Rise 40K
Working Tem (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 15g

 

 The specifiction of 12mm 6v small electric gear motors with dual shaft

Technical Parameters
PN Rated Voltage Initial Speed Ratio Power Noload Speed Noload Current Rated Speed Rated Current Rated Torque Stall Torque Stall Current
V DC rpm 1:xxx W rpm mA rpm mA Kg.cm Kg.cm mA
12ZYJ-25A 3 7500 298 1 25 50 20 150 0.6 2 500
12ZYJ-150A 6 15000 100 1 150 50 120 150 0.3 1.5 500
12ZYJ-80A 6 20000 250 1 80 60 70 160 0.5 2 600

 

 

The drawing of 12mm 6v small electric gear motors with dual shaft

About our company
Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements. 

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others. 

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price. 

Terms of Trade
 

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL, TNT,UPS,EMS
for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                           15-30 working days by vessel

Our promise to our Customers:
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours.

Contact 
  
 

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Best Sales Mini Micro Metal Brush Robot 12mm 6V Small Electric Gear Motors with Dual Shaft for Car Conversion Kit   motorbaseChina Best Sales Mini Micro Metal Brush Robot 12mm 6V Small Electric Gear Motors with Dual Shaft for Car Conversion Kit   motorbase
editor by CX 2023-11-13

China Custom 36mm Planetary Gearbox 120rpm 12V DC Gear Motor High Torque Low Rpm Motors for Robots with Best Sales

Product Description

Quiet stable and reliable for long life operation

Motor type 63ZYT-125-24
Protection grade IP50
Duty cycle S1 (100%)
Rated voltage 24 V
Rated current 4.9  A
Input power 117.6 W
No-load current 0.4 A
Rated torque 0.27 Nm
Rated speed 3300 ±10% rpm
Rated output power 93.3 W
Friction torque 2 Ncm
efficiency 80%
Maximum torque 1.3 ±10% Nm
Maximum current 23 A
No-load speed 3650 ±10% rpm
Maximum power 245 W
Maximum shell temperature 85 ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection grade IP65
Reduction ratio 710.5:1
Rated torque 120 Nm
Maximum torque 180 Nm
Ambient temperature -20 to 85 ºC
Grease Smart Smart top 28
Grease temperature range -20 to 160 ºC

Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Certification: ISO9001, CCC, CE
Brand: Jintian
Power: 117.6W
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Custom 36mm Planetary Gearbox 120rpm 12V DC Gear Motor High Torque Low Rpm Motors for Robots   with Best SalesChina Custom 36mm Planetary Gearbox 120rpm 12V DC Gear Motor High Torque Low Rpm Motors for Robots   with Best Sales
editor by CX 2023-05-31

China OEM ZD Direct On-line Starting DC Transmission Planetary Gear Motors For Solar Tracker with high quality

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Detailed Photos

Features:
The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Application: Industrial, Power Tools, Car
Operating Speed: Constant Speed
Number of Stator: Single-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China OEM ZD Direct On-line Starting DC Transmission Planetary Gear Motors For Solar Tracker   with high qualityChina OEM ZD Direct On-line Starting DC Transmission Planetary Gear Motors For Solar Tracker   with high quality
editor by CX 2023-04-28

China 36mm Planetary Gearbox 120rpm 24V DC Gear Motor High Torque Low Rpm Motors for Robots with high quality

Item Description

Tranquil steady and dependable for extended life operation

Motor sort 63ZYT-a hundred twenty five-24
Defense grade IP50
Responsibility cycle S1 (a hundred%)
Rated voltage 24 V
Rated recent four.9  A
Enter energy 117.six W
No-load present .four A
Rated torque .27 Nm
Rated velocity 3300 ±10% rpm
Rated output power ninety three.three W
Friction torque two Ncm
effectiveness 80%
Maximum torque one.3 ±10% Nm
Greatest existing 23 A
No-load velocity 3650 ±10% rpm
Highest energy 245 W
Optimum shell temperature eighty five ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection quality IP65
Reduction ratio 710.5:one
Rated torque a hundred and twenty Nm
Optimum torque a hundred and eighty Nm
Ambient temperature -20 to 85 ºC
Grease Intelligent Smart top 28
Grease temperature assortment -20 to 160 ºC

US $85-130
/ Piece
|
50 Pieces

(Min. Order)

###

Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Certification: ISO9001, CCC, CE
Brand: Jintian
Power: 117.6W

###

Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Motor type 63ZYT-125-24
Protection grade IP50
Duty cycle S1 (100%)
Rated voltage 24 V
Rated current 4.9  A
Input power 117.6 W
No-load current 0.4 A
Rated torque 0.27 Nm
Rated speed 3300 ±10% rpm
Rated output power 93.3 W
Friction torque 2 Ncm
efficiency 80%
Maximum torque 1.3 ±10% Nm
Maximum current 23 A
No-load speed 3650 ±10% rpm
Maximum power 245 W
Maximum shell temperature 85 ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection grade IP65
Reduction ratio 710.5:1
Rated torque 120 Nm
Maximum torque 180 Nm
Ambient temperature -20 to 85 ºC
Grease Smart Smart top 28
Grease temperature range -20 to 160 ºC
US $85-130
/ Piece
|
50 Pieces

(Min. Order)

###

Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Certification: ISO9001, CCC, CE
Brand: Jintian
Power: 117.6W

###

Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Motor type 63ZYT-125-24
Protection grade IP50
Duty cycle S1 (100%)
Rated voltage 24 V
Rated current 4.9  A
Input power 117.6 W
No-load current 0.4 A
Rated torque 0.27 Nm
Rated speed 3300 ±10% rpm
Rated output power 93.3 W
Friction torque 2 Ncm
efficiency 80%
Maximum torque 1.3 ±10% Nm
Maximum current 23 A
No-load speed 3650 ±10% rpm
Maximum power 245 W
Maximum shell temperature 85 ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection grade IP65
Reduction ratio 710.5:1
Rated torque 120 Nm
Maximum torque 180 Nm
Ambient temperature -20 to 85 ºC
Grease Smart Smart top 28
Grease temperature range -20 to 160 ºC

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China 36mm Planetary Gearbox 120rpm 24V DC Gear Motor High Torque Low Rpm Motors for Robots     with high qualityChina 36mm Planetary Gearbox 120rpm 24V DC Gear Motor High Torque Low Rpm Motors for Robots     with high quality
editor by czh 2023-01-06

China Low noise small electric toy planetary gear motors with high quality

Item Description

Minimal noise small electric toy planetary gear motors

Principal Attributes
one.OEM&solODM 28mm gearbox additionally 380&385 permanent magnet DC motor & 28mm brushless motor
2.Tiny size dc gear motor with lower velocity and large torque
three.28mm gear motor offer 2.0Nm torque and much more reputable
4.Appropriate to small diameter, minimal sounds and massive torque application
five.DC Equipment motor can match enchoder, 11ppr 
6.Reduction ratio:4,14,19,27,fifty one,71,a hundred,one hundred thirty five,189,264,369,516,720
 

                                    Design:Motor GMP28-385SP
 
TRS-385SP-0640
Rated voltage:6V DC Rated pace:3250r&solmin Output electricity:1.6W
No-load velocity:4000r&solmin Rated torque:45g.cm Stall torque:250g&solcm
No-load existing:200mA Rated current600mA Stall present:2.5A
 
 
TRS-385SP-1265
Rated voltage:12V DC Rated velocity:5200r&solmin Output power:3.2W
No-load pace:6500r&solmin Rated torque:60g.cm Stall torque:310g&solcm
No-load present:150mA Rated present:500mA Stall present:2.0A
 
 
TRS-385SP-2454
Rated voltage:24V DC Rated speed:4000r&solmin Output electricity:2.5W
No-load pace:5400r&solmin Rated torque:60g.cm Stall torque:240g&solcm
No-load existing:100mA Rated recent:200mA Stall current:.7A

 
Equipment motor specialized data : GMP28-385SP-0640-XXX

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.five 36 36 forty three 43 fifty fifty 50 fifty 50
No-load pace rpm 900 190 a hundred and forty 75 38 20 15 11 eight 5
Rated pace rpm 810 a hundred and seventy a hundred and twenty sixty four 32 17 twelve 9 six four
Rated torque kg.cm .fourteen .6 .nine one.4 2.7 four.seven six 8 eleven 13
Max.momentary tolerance torque kg.cm .8 three.3 four.7 7.6 fifteen 26 thirty 30 thirty 30

Gear motor complex info : GMP28-385SP-1265-XXX

Reduction ratio four 19 27 fifty one 100 189 264 369 516 720
Size mm 28.five 36 36 43 43 fifty 50 50 fifty 50
No-load speed rpm 1500 330 230 a hundred and twenty 63 34 23 sixteen 12 8
Rated velocity rpm 1300 270 a hundred ninety a hundred fifty two 27 20 14 10 7
Rated torque kg.cm .19 .eight 1.one 1.8 3.6 6 8 11 fifteen 17
Max.momentary tolerance torque kg.cm one. four.one five.8 9.five 19 thirty 30 30 thirty thirty

Gear motor complex information : GMP28-385SP-2454-XXX

Reduction ratio four 19 27 fifty one one hundred 189 264 369 516 720
Length mm 28.5 36 36 forty three 43 fifty 50 50 fifty fifty
No-load velocity rpm 1250 270 one hundred ninety one hundred fifty 29 20 fifteen ten eight
Rated speed rpm one thousand 210 one hundred fifty 78 40 21 fifteen 11 8 6
Rated torque kg.cm .19 .8 one.1 one.8 3.six 6 eight 11 15 17
Max.momentary tolerance torque kg.cm .eight 3.2 4.5 seven.three 14 25 30 30 30 30

Merchandise Application

Other Apps:
Organization Equipment: ATM, Copiers and Scanners, Currency Dealing with, Level of Sale, Printers, Vending Equipment.
Foods and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Espresso Equipment, Foodstuff Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Residence Leisure and Gaming: Gaming Machines, Online video Games, Optical Disk Drives, RC and Electrical power Toys.
Home Systems: Home Air flow, Air Purifiers and Dehumidifiers, Assortment Hoods, Washers and Dryers, Refrigerators, Dishwashers, Flooring Treatment, Whirlpool and Spa, Showers, Smart Metering, Espresso Devices.
Garden and Yard: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Treatment: Hair Slicing, Hair Care, Massagers.
Electricity Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Digital camera and Optical: Online video, Cameras, Projectors.

Packing & Delivery
Packaging: one carton packing, 100 items for every box.
Delivery time:
DHL: 3-5 doing work times &semi
UPS: 5-7 working times&semi
TNT: 5-7 working times&semi
FedEx: 7-9 doing work days&semi
EMS: 12-15 working times&semi
By Sea: Depends on which country

Our Company 
TT Motor &lparHK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective areas given that 2000.
Our merchandise are broadly used in amusement programs, automobiles, property and industrial appliances and equipment and several others. Our goods are trustworthy and lengthy-long lasting, and backed by several years of experience. We export 98&percnt of our output around the world. 
By leveraging our tough-won reputation for honesty, dependability and high quality, TT Motor aims to carry on as a pioneer in the revenue overseas by seeking worldwide associates. If your firm is an end-user of micro-motors, a distributor or an agent, please make contact with us. We seem ahead to being CZPT to function together with you in the near foreseeable future.

FAQ
Q: How to buy&quest
A: send us inquiry &rightarrow receive our quotation &rightarrow negotiate information &rightarrow confirm the sample &rightarrow sign agreement&soldeposit &rightarrow mass production &rightarrow cargo all set &rightarrow balance&soldelivery &rightarrow further cooperation.
Q: How about Sample order&quest
A: Sample is offered for you. remember to get in touch with us for information. Contact us
Q: Which delivery way is avaliable&quest
A: DHL, UPS, FedEx, TNT, EMS, China Publish,Sea are accessible.The other shipping approaches are also accessible, please get in touch with us if you want ship by the other shipping and delivery way. 
Q: How extended is the provide&quest
A: Devliver time relies upon on the quantity you purchase. typically it requires fifteen-twenty five doing work days.
Q: My package has lacking items. What can I do&quest
A: Remember to speak to our support staff and we will confirm your get with the package deal contents.We apologize for any inconveniences. 
Q: How to affirm the payment&quest
A: We acknowledge payment by T&solT, PayPal, the other payment approaches also could be recognized,You should speak to us just before you spend by the other payment ways. Also 30-50&percnt deposit is offered, the balance money should be compensated just before transport.

US $12-20
/ Piece
|
100 Pieces

(Min. Order)

###

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Drip-proof
Number of Poles: 4

###

Customization:

###

                                    Model:Motor GMP28-385SP
 
TRS-385SP-0640
Rated voltage:6V DC Rated speed:3250r/min Output power:1.6W
No-load speed:4000r/min Rated torque:45g.cm Stall torque:250g/cm
No-load current:200mA Rated current600mA Stall current:2.5A
 
 
TRS-385SP-1265
Rated voltage:12V DC Rated speed:5200r/min Output power:3.2W
No-load speed:6500r/min Rated torque:60g.cm Stall torque:310g/cm
No-load current:150mA Rated current:500mA Stall current:2.0A
 
 
TRS-385SP-2454
Rated voltage:24V DC Rated speed:4000r/min Output power:2.5W
No-load speed:5400r/min Rated torque:60g.cm Stall torque:240g/cm
No-load current:100mA Rated current:200mA Stall current:0.7A

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 900 190 140 75 38 20 15 11 8 5
Rated speed rpm 810 170 120 64 32 17 12 9 6 4
Rated torque kg.cm 0.14 0.6 0.9 1.4 2.7 4.7 6 8 11 13
Max.momentary tolerance torque kg.cm 0.8 3.3 4.7 7.6 15 26 30 30 30 30

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 1500 330 230 120 63 34 23 16 12 8
Rated speed rpm 1300 270 190 100 52 27 20 14 10 7
Rated torque kg.cm 0.19 0.8 1.1 1.8 3.6 6 8 11 15 17
Max.momentary tolerance torque kg.cm 1.0 4.1 5.8 9.5 19 30 30 30 30 30

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 1250 270 190 100 50 29 20 15 10 8
Rated speed rpm 1000 210 150 78 40 21 15 11 8 6
Rated torque kg.cm 0.19 0.8 1.1 1.8 3.6 6 8 11 15 17
Max.momentary tolerance torque kg.cm 0.8 3.2 4.5 7.3 14 25 30 30 30 30

###

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.
US $12-20
/ Piece
|
100 Pieces

(Min. Order)

###

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Drip-proof
Number of Poles: 4

###

Customization:

###

                                    Model:Motor GMP28-385SP
 
TRS-385SP-0640
Rated voltage:6V DC Rated speed:3250r/min Output power:1.6W
No-load speed:4000r/min Rated torque:45g.cm Stall torque:250g/cm
No-load current:200mA Rated current600mA Stall current:2.5A
 
 
TRS-385SP-1265
Rated voltage:12V DC Rated speed:5200r/min Output power:3.2W
No-load speed:6500r/min Rated torque:60g.cm Stall torque:310g/cm
No-load current:150mA Rated current:500mA Stall current:2.0A
 
 
TRS-385SP-2454
Rated voltage:24V DC Rated speed:4000r/min Output power:2.5W
No-load speed:5400r/min Rated torque:60g.cm Stall torque:240g/cm
No-load current:100mA Rated current:200mA Stall current:0.7A

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 900 190 140 75 38 20 15 11 8 5
Rated speed rpm 810 170 120 64 32 17 12 9 6 4
Rated torque kg.cm 0.14 0.6 0.9 1.4 2.7 4.7 6 8 11 13
Max.momentary tolerance torque kg.cm 0.8 3.3 4.7 7.6 15 26 30 30 30 30

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 1500 330 230 120 63 34 23 16 12 8
Rated speed rpm 1300 270 190 100 52 27 20 14 10 7
Rated torque kg.cm 0.19 0.8 1.1 1.8 3.6 6 8 11 15 17
Max.momentary tolerance torque kg.cm 1.0 4.1 5.8 9.5 19 30 30 30 30 30

###

Reduction ratio 4 19 27 51 100 189 264 369 516 720
Length mm 28.5 36 36 43 43 50 50 50 50 50
No-load speed rpm 1250 270 190 100 50 29 20 15 10 8
Rated speed rpm 1000 210 150 78 40 21 15 11 8 6
Rated torque kg.cm 0.19 0.8 1.1 1.8 3.6 6 8 11 15 17
Max.momentary tolerance torque kg.cm 0.8 3.2 4.5 7.3 14 25 30 30 30 30

###

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Low noise small electric toy planetary gear motors     with high qualityChina Low noise small electric toy planetary gear motors     with high quality
editor by czh 2022-12-19

China 24V 2HP Brushless Planetary Magnet Electric DC Gear Geared Motors with Hot selling

Product Description

Environmental conditions -20ºC~50ºC
Magnet material Bonder NdfeB
Number of poles/phase 8/3
Insulation class Class B
Insulation resistance 100MΩmin 500VDC


Electrical Specifications

Model 42BL40-240-2 42BL60-240-2 42BL80-240-2
Number of Phases 8
voltage VDC 24
Rated speed rpm 4000
Rated torque N.m 0.063 0.125 0.185
Rated current Amps. 1.8 3.5 5.2
Rated power Watt. 27 52 78
Max torque N.m 0.185 0.38 0.55
Torque constant N.m/Amps. 0.035 0.041 0.042
Back EMF V/Krpm 3.17 3.13 3.28
Rotor inertia kg.mm2 5.2 9.3 13.4
Lenght mm 40 60 80
Net Weight Kg 0.3 0.47 0.65

Dimensions

We hold 2 mainly production lines, 1 of which is the brushless motor. The delivery time will be  about 10-20 days if the quantity is less than 300 pcs. 

US $14.99
/ Piece
|
10 Pieces

(Min. Order)

###

Application: Universal, Industrial, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 17/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Environmental conditions -20ºC~50ºC
Magnet material Bonder NdfeB
Number of poles/phase 8/3
Insulation class Class B
Insulation resistance 100MΩmin 500VDC

###

Model 42BL40-240-2 42BL60-240-2 42BL80-240-2
Number of Phases 8
voltage VDC 24
Rated speed rpm 4000
Rated torque N.m 0.063 0.125 0.185
Rated current Amps. 1.8 3.5 5.2
Rated power Watt. 27 52 78
Max torque N.m 0.185 0.38 0.55
Torque constant N.m/Amps. 0.035 0.041 0.042
Back EMF V/Krpm 3.17 3.13 3.28
Rotor inertia kg.mm2 5.2 9.3 13.4
Lenght mm 40 60 80
Net Weight Kg 0.3 0.47 0.65
US $14.99
/ Piece
|
10 Pieces

(Min. Order)

###

Application: Universal, Industrial, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 17/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Environmental conditions -20ºC~50ºC
Magnet material Bonder NdfeB
Number of poles/phase 8/3
Insulation class Class B
Insulation resistance 100MΩmin 500VDC

###

Model 42BL40-240-2 42BL60-240-2 42BL80-240-2
Number of Phases 8
voltage VDC 24
Rated speed rpm 4000
Rated torque N.m 0.063 0.125 0.185
Rated current Amps. 1.8 3.5 5.2
Rated power Watt. 27 52 78
Max torque N.m 0.185 0.38 0.55
Torque constant N.m/Amps. 0.035 0.041 0.042
Back EMF V/Krpm 3.17 3.13 3.28
Rotor inertia kg.mm2 5.2 9.3 13.4
Lenght mm 40 60 80
Net Weight Kg 0.3 0.47 0.65

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China 24V 2HP Brushless Planetary Magnet Electric DC Gear Geared Motors     with Hot selling	China 24V 2HP Brushless Planetary Magnet Electric DC Gear Geared Motors     with Hot selling
editor by czh 2022-11-24