Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Detailed Photos
Features:
The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.
Other Related Products
Click here to find what you are looking for:
Company Profile
FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.
Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.
Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial, Power Tools, Car |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Single-Phase |
Rotor Structure: | Squirrel-Cage |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Customization: |
Available
|
|
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
In which industries are gear motors commonly used, and what are their primary applications?
Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:
1. Robotics and Automation:
Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.
2. Automotive Industry:
The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.
3. Manufacturing and Machinery:
Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.
4. HVAC and Building Systems:
In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.
5. Marine and Offshore Industry:
Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.
6. Renewable Energy Systems:
The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.
7. Medical and Healthcare:
Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.
These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.
editor by CX 2024-04-23
China Custom 36mm Planetary Gearbox 120rpm 12V DC Gear Motor High Torque Low Rpm Motors for Robots with Best Sales
Product Description
Quiet stable and reliable for long life operation
Motor type | 63ZYT-125-24 | |
Protection grade | IP50 | |
Duty cycle | S1 (100%) | |
Rated voltage | 24 | V |
Rated current | 4.9 | A |
Input power | 117.6 | W |
No-load current | 0.4 | A |
Rated torque | 0.27 | Nm |
Rated speed | 3300 | ±10% rpm |
Rated output power | 93.3 | W |
Friction torque | 2 | Ncm |
efficiency | 80% | |
Maximum torque | 1.3 | ±10% Nm |
Maximum current | 23 | A |
No-load speed | 3650 | ±10% rpm |
Maximum power | 245 | W |
Maximum shell temperature | 85 | ºC |
Weight | 1.7 | Kg |
Planetary gear box | F1130 | |
Protection grade | IP65 | |
Reduction ratio | 710.5:1 | |
Rated torque | 120 | Nm |
Maximum torque | 180 | Nm |
Ambient temperature | -20 to 85 | ºC |
Grease Smart | Smart top 28 | |
Grease temperature range | -20 to 160 | ºC |
Function: | Control, Driving |
---|---|
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Certification: | ISO9001, CCC, CE |
Brand: | Jintian |
Power: | 117.6W |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by CX 2023-05-31
China OEM ZD Direct On-line Starting DC Transmission Planetary Gear Motors For Solar Tracker with high quality
Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Detailed Photos
Features:
The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.
Other Related Products
Click here to find what you are looking for:
Company Profile
FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.
Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.
Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
Application: | Industrial, Power Tools, Car |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Single-Phase |
Rotor Structure: | Squirrel-Cage |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Customization: |
Available
| Customized Request |
---|
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by CX 2023-04-28
China best ZD Direct On-line Starting DC Transmission Planetary Gear Motors For Solar Tracker dc motor
Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Detailed Photos
Features:
The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.
Other Related Products
Click here to find what you are looking for:
Company Profile
FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.
Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.
Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
Application: | Industrial, Power Tools, Car |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Single-Phase |
Rotor Structure: | Squirrel-Cage |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Customization: |
Available
| Customized Request |
---|
How to Maximize Gear Motor Reliability
A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.
Applications of a gear motor
Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Types
Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Functions
A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.
Reliability
The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Cost
The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.
editor by CX 2023-04-26
China 36mm Planetary Gearbox 120rpm 24V DC Gear Motor High Torque Low Rpm Motors for Robots with high quality
Item Description
Tranquil steady and dependable for extended life operation
Motor sort | 63ZYT-a hundred twenty five-24 | |
Defense grade | IP50 | |
Responsibility cycle | S1 (a hundred%) | |
Rated voltage | 24 | V |
Rated recent | four.9 | A |
Enter energy | 117.six | W |
No-load present | .four | A |
Rated torque | .27 | Nm |
Rated velocity | 3300 | ±10% rpm |
Rated output power | ninety three.three | W |
Friction torque | two | Ncm |
effectiveness | 80% | |
Maximum torque | one.3 | ±10% Nm |
Greatest existing | 23 | A |
No-load velocity | 3650 | ±10% rpm |
Highest energy | 245 | W |
Optimum shell temperature | eighty five | ºC |
Weight | 1.7 | Kg |
Planetary gear box | F1130 | |
Protection quality | IP65 | |
Reduction ratio | 710.5:one | |
Rated torque | a hundred and twenty | Nm |
Optimum torque | a hundred and eighty | Nm |
Ambient temperature | -20 to 85 | ºC |
Grease Intelligent | Smart top 28 | |
Grease temperature assortment | -20 to 160 | ºC |
US $85-130 / Piece | |
50 Pieces (Min. Order) |
###
Function: | Control, Driving |
---|---|
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Certification: | ISO9001, CCC, CE |
Brand: | Jintian |
Power: | 117.6W |
###
Samples: |
US$ 162/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Motor type | 63ZYT-125-24 | |
Protection grade | IP50 | |
Duty cycle | S1 (100%) | |
Rated voltage | 24 | V |
Rated current | 4.9 | A |
Input power | 117.6 | W |
No-load current | 0.4 | A |
Rated torque | 0.27 | Nm |
Rated speed | 3300 | ±10% rpm |
Rated output power | 93.3 | W |
Friction torque | 2 | Ncm |
efficiency | 80% | |
Maximum torque | 1.3 | ±10% Nm |
Maximum current | 23 | A |
No-load speed | 3650 | ±10% rpm |
Maximum power | 245 | W |
Maximum shell temperature | 85 | ºC |
Weight | 1.7 | Kg |
Planetary gear box | F1130 | |
Protection grade | IP65 | |
Reduction ratio | 710.5:1 | |
Rated torque | 120 | Nm |
Maximum torque | 180 | Nm |
Ambient temperature | -20 to 85 | ºC |
Grease Smart | Smart top 28 | |
Grease temperature range | -20 to 160 | ºC |
US $85-130 / Piece | |
50 Pieces (Min. Order) |
###
Function: | Control, Driving |
---|---|
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Certification: | ISO9001, CCC, CE |
Brand: | Jintian |
Power: | 117.6W |
###
Samples: |
US$ 162/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Motor type | 63ZYT-125-24 | |
Protection grade | IP50 | |
Duty cycle | S1 (100%) | |
Rated voltage | 24 | V |
Rated current | 4.9 | A |
Input power | 117.6 | W |
No-load current | 0.4 | A |
Rated torque | 0.27 | Nm |
Rated speed | 3300 | ±10% rpm |
Rated output power | 93.3 | W |
Friction torque | 2 | Ncm |
efficiency | 80% | |
Maximum torque | 1.3 | ±10% Nm |
Maximum current | 23 | A |
No-load speed | 3650 | ±10% rpm |
Maximum power | 245 | W |
Maximum shell temperature | 85 | ºC |
Weight | 1.7 | Kg |
Planetary gear box | F1130 | |
Protection grade | IP65 | |
Reduction ratio | 710.5:1 | |
Rated torque | 120 | Nm |
Maximum torque | 180 | Nm |
Ambient temperature | -20 to 85 | ºC |
Grease Smart | Smart top 28 | |
Grease temperature range | -20 to 160 | ºC |
Dynamic Modeling of a Planetary Motor
A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.
planetary gear system
A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
planetary gear train
To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?
planetary gear train with fixed carrier train ratio
The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
planetary gear train with zero helix angle
The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!
planetary gear train with spur gears
A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
planetary gear train with helical gears
A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.
editor by czh 2023-01-06
China Low noise small electric toy planetary gear motors with high quality
Item Description
Minimal noise small electric toy planetary gear motors
Principal Attributes
one.OEM&solODM 28mm gearbox additionally 380&385 permanent magnet DC motor & 28mm brushless motor
2.Tiny size dc gear motor with lower velocity and large torque
three.28mm gear motor offer 2.0Nm torque and much more reputable
4.Appropriate to small diameter, minimal sounds and massive torque application
five.DC Equipment motor can match enchoder, 11ppr
6.Reduction ratio:4,14,19,27,fifty one,71,a hundred,one hundred thirty five,189,264,369,516,720
Design:Motor GMP28-385SP | |||
TRS-385SP-0640 |
Rated voltage:6V DC | Rated pace:3250r&solmin | Output electricity:1.6W |
No-load velocity:4000r&solmin | Rated torque:45g.cm | Stall torque:250g&solcm | |
No-load existing:200mA | Rated current600mA | Stall present:2.5A | |
TRS-385SP-1265 |
Rated voltage:12V DC | Rated velocity:5200r&solmin | Output power:3.2W |
No-load pace:6500r&solmin | Rated torque:60g.cm | Stall torque:310g&solcm | |
No-load present:150mA | Rated present:500mA | Stall present:2.0A | |
TRS-385SP-2454 |
Rated voltage:24V DC | Rated speed:4000r&solmin | Output electricity:2.5W |
No-load pace:5400r&solmin | Rated torque:60g.cm | Stall torque:240g&solcm | |
No-load existing:100mA | Rated recent:200mA | Stall current:.7A |
Equipment motor specialized data : GMP28-385SP-0640-XXX
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.five | 36 | 36 | forty three | 43 | fifty | fifty | 50 | fifty | 50 |
No-load pace rpm | 900 | 190 | a hundred and forty | 75 | 38 | 20 | 15 | 11 | eight | 5 |
Rated pace rpm | 810 | a hundred and seventy | a hundred and twenty | sixty four | 32 | 17 | twelve | 9 | six | four |
Rated torque kg.cm | .fourteen | .6 | .nine | one.4 | 2.7 | four.seven | six | 8 | eleven | 13 |
Max.momentary tolerance torque kg.cm | .8 | three.3 | four.7 | 7.6 | fifteen | 26 | thirty | 30 | thirty | 30 |
Gear motor complex info : GMP28-385SP-1265-XXX
Reduction ratio | four | 19 | 27 | fifty one | 100 | 189 | 264 | 369 | 516 | 720 |
Size mm | 28.five | 36 | 36 | 43 | 43 | fifty | 50 | 50 | fifty | 50 |
No-load speed rpm | 1500 | 330 | 230 | a hundred and twenty | 63 | 34 | 23 | sixteen | 12 | 8 |
Rated velocity rpm | 1300 | 270 | a hundred ninety | a hundred | fifty two | 27 | 20 | 14 | 10 | 7 |
Rated torque kg.cm | .19 | .eight | 1.one | 1.8 | 3.6 | 6 | 8 | 11 | fifteen | 17 |
Max.momentary tolerance torque kg.cm | one. | four.one | five.8 | 9.five | 19 | thirty | 30 | 30 | thirty | thirty |
Gear motor complex information : GMP28-385SP-2454-XXX
Reduction ratio | four | 19 | 27 | fifty one | one hundred | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | forty three | 43 | fifty | 50 | 50 | fifty | fifty |
No-load velocity rpm | 1250 | 270 | one hundred ninety | one hundred | fifty | 29 | 20 | fifteen | ten | eight |
Rated speed rpm | one thousand | 210 | one hundred fifty | 78 | 40 | 21 | fifteen | 11 | 8 | 6 |
Rated torque kg.cm | .19 | .8 | one.1 | one.8 | 3.six | 6 | eight | 11 | 15 | 17 |
Max.momentary tolerance torque kg.cm | .eight | 3.2 | 4.5 | seven.three | 14 | 25 | 30 | 30 | 30 | 30 |
Merchandise Application
Other Apps: | |
Organization Equipment: | ATM, Copiers and Scanners, Currency Dealing with, Level of Sale, Printers, Vending Equipment. |
Foods and Beverage: | Beverage Dispensing, Hand Blenders, Blenders, Mixers, Espresso Equipment, Foodstuff Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers. |
Residence Leisure and Gaming: | Gaming Machines, Online video Games, Optical Disk Drives, RC and Electrical power Toys. |
Home Systems: | Home Air flow, Air Purifiers and Dehumidifiers, Assortment Hoods, Washers and Dryers, Refrigerators, Dishwashers, Flooring Treatment, Whirlpool and Spa, Showers, Smart Metering, Espresso Devices. |
Garden and Yard: | Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers. |
Personal Treatment: | Hair Slicing, Hair Care, Massagers. |
Electricity Tools: | Drills and Drivers, Sanders, Grinders, Polishers, Saws. |
Digital camera and Optical: | Online video, Cameras, Projectors. |
Packing & Delivery
Packaging: one carton packing, 100 items for every box.
Delivery time:
DHL: 3-5 doing work times &semi
UPS: 5-7 working times&semi
TNT: 5-7 working times&semi
FedEx: 7-9 doing work days&semi
EMS: 12-15 working times&semi
By Sea: Depends on which country
Our Company
TT Motor &lparHK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective areas given that 2000.
Our merchandise are broadly used in amusement programs, automobiles, property and industrial appliances and equipment and several others. Our goods are trustworthy and lengthy-long lasting, and backed by several years of experience. We export 98&percnt of our output around the world.
By leveraging our tough-won reputation for honesty, dependability and high quality, TT Motor aims to carry on as a pioneer in the revenue overseas by seeking worldwide associates. If your firm is an end-user of micro-motors, a distributor or an agent, please make contact with us. We seem ahead to being CZPT to function together with you in the near foreseeable future.
FAQ
Q: How to buy&quest
A: send us inquiry &rightarrow receive our quotation &rightarrow negotiate information &rightarrow confirm the sample &rightarrow sign agreement&soldeposit &rightarrow mass production &rightarrow cargo all set &rightarrow balance&soldelivery &rightarrow further cooperation.
Q: How about Sample order&quest
A: Sample is offered for you. remember to get in touch with us for information. Contact us
Q: Which delivery way is avaliable&quest
A: DHL, UPS, FedEx, TNT, EMS, China Publish,Sea are accessible.The other shipping approaches are also accessible, please get in touch with us if you want ship by the other shipping and delivery way.
Q: How extended is the provide&quest
A: Devliver time relies upon on the quantity you purchase. typically it requires fifteen-twenty five doing work days.
Q: My package has lacking items. What can I do&quest
A: Remember to speak to our support staff and we will confirm your get with the package deal contents.We apologize for any inconveniences.
Q: How to affirm the payment&quest
A: We acknowledge payment by T&solT, PayPal, the other payment approaches also could be recognized,You should speak to us just before you spend by the other payment ways. Also 30-50&percnt deposit is offered, the balance money should be compensated just before transport.
US $12-20 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Permanent Magnet |
Function: | Control |
Casing Protection: | Drip-proof |
Number of Poles: | 4 |
###
Customization: |
Available
|
---|
###
Model:Motor GMP28-385SP | |||
TRS-385SP-0640 |
Rated voltage:6V DC | Rated speed:3250r/min | Output power:1.6W |
No-load speed:4000r/min | Rated torque:45g.cm | Stall torque:250g/cm | |
No-load current:200mA | Rated current600mA | Stall current:2.5A | |
TRS-385SP-1265 |
Rated voltage:12V DC | Rated speed:5200r/min | Output power:3.2W |
No-load speed:6500r/min | Rated torque:60g.cm | Stall torque:310g/cm | |
No-load current:150mA | Rated current:500mA | Stall current:2.0A | |
TRS-385SP-2454 |
Rated voltage:24V DC | Rated speed:4000r/min | Output power:2.5W |
No-load speed:5400r/min | Rated torque:60g.cm | Stall torque:240g/cm | |
No-load current:100mA | Rated current:200mA | Stall current:0.7A |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 900 | 190 | 140 | 75 | 38 | 20 | 15 | 11 | 8 | 5 |
Rated speed rpm | 810 | 170 | 120 | 64 | 32 | 17 | 12 | 9 | 6 | 4 |
Rated torque kg.cm | 0.14 | 0.6 | 0.9 | 1.4 | 2.7 | 4.7 | 6 | 8 | 11 | 13 |
Max.momentary tolerance torque kg.cm | 0.8 | 3.3 | 4.7 | 7.6 | 15 | 26 | 30 | 30 | 30 | 30 |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 1500 | 330 | 230 | 120 | 63 | 34 | 23 | 16 | 12 | 8 |
Rated speed rpm | 1300 | 270 | 190 | 100 | 52 | 27 | 20 | 14 | 10 | 7 |
Rated torque kg.cm | 0.19 | 0.8 | 1.1 | 1.8 | 3.6 | 6 | 8 | 11 | 15 | 17 |
Max.momentary tolerance torque kg.cm | 1.0 | 4.1 | 5.8 | 9.5 | 19 | 30 | 30 | 30 | 30 | 30 |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 1250 | 270 | 190 | 100 | 50 | 29 | 20 | 15 | 10 | 8 |
Rated speed rpm | 1000 | 210 | 150 | 78 | 40 | 21 | 15 | 11 | 8 | 6 |
Rated torque kg.cm | 0.19 | 0.8 | 1.1 | 1.8 | 3.6 | 6 | 8 | 11 | 15 | 17 |
Max.momentary tolerance torque kg.cm | 0.8 | 3.2 | 4.5 | 7.3 | 14 | 25 | 30 | 30 | 30 | 30 |
###
Other Applications: | |
Business Machines: | ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines. |
Food and Beverage: | Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers. |
Home Entertainment and Gaming: | Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys. |
Home Technologies: | Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines. |
Lawn and Garden: | Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers. |
Personal Care: | Hair Cutting, Hair Care, Massagers. |
Power Tools: | Drills and Drivers, Sanders, Grinders, Polishers, Saws. |
Camera and Optical: | Video, Cameras, Projectors. |
US $12-20 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Permanent Magnet |
Function: | Control |
Casing Protection: | Drip-proof |
Number of Poles: | 4 |
###
Customization: |
Available
|
---|
###
Model:Motor GMP28-385SP | |||
TRS-385SP-0640 |
Rated voltage:6V DC | Rated speed:3250r/min | Output power:1.6W |
No-load speed:4000r/min | Rated torque:45g.cm | Stall torque:250g/cm | |
No-load current:200mA | Rated current600mA | Stall current:2.5A | |
TRS-385SP-1265 |
Rated voltage:12V DC | Rated speed:5200r/min | Output power:3.2W |
No-load speed:6500r/min | Rated torque:60g.cm | Stall torque:310g/cm | |
No-load current:150mA | Rated current:500mA | Stall current:2.0A | |
TRS-385SP-2454 |
Rated voltage:24V DC | Rated speed:4000r/min | Output power:2.5W |
No-load speed:5400r/min | Rated torque:60g.cm | Stall torque:240g/cm | |
No-load current:100mA | Rated current:200mA | Stall current:0.7A |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 900 | 190 | 140 | 75 | 38 | 20 | 15 | 11 | 8 | 5 |
Rated speed rpm | 810 | 170 | 120 | 64 | 32 | 17 | 12 | 9 | 6 | 4 |
Rated torque kg.cm | 0.14 | 0.6 | 0.9 | 1.4 | 2.7 | 4.7 | 6 | 8 | 11 | 13 |
Max.momentary tolerance torque kg.cm | 0.8 | 3.3 | 4.7 | 7.6 | 15 | 26 | 30 | 30 | 30 | 30 |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 1500 | 330 | 230 | 120 | 63 | 34 | 23 | 16 | 12 | 8 |
Rated speed rpm | 1300 | 270 | 190 | 100 | 52 | 27 | 20 | 14 | 10 | 7 |
Rated torque kg.cm | 0.19 | 0.8 | 1.1 | 1.8 | 3.6 | 6 | 8 | 11 | 15 | 17 |
Max.momentary tolerance torque kg.cm | 1.0 | 4.1 | 5.8 | 9.5 | 19 | 30 | 30 | 30 | 30 | 30 |
###
Reduction ratio | 4 | 19 | 27 | 51 | 100 | 189 | 264 | 369 | 516 | 720 |
Length mm | 28.5 | 36 | 36 | 43 | 43 | 50 | 50 | 50 | 50 | 50 |
No-load speed rpm | 1250 | 270 | 190 | 100 | 50 | 29 | 20 | 15 | 10 | 8 |
Rated speed rpm | 1000 | 210 | 150 | 78 | 40 | 21 | 15 | 11 | 8 | 6 |
Rated torque kg.cm | 0.19 | 0.8 | 1.1 | 1.8 | 3.6 | 6 | 8 | 11 | 15 | 17 |
Max.momentary tolerance torque kg.cm | 0.8 | 3.2 | 4.5 | 7.3 | 14 | 25 | 30 | 30 | 30 | 30 |
###
Other Applications: | |
Business Machines: | ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines. |
Food and Beverage: | Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers. |
Home Entertainment and Gaming: | Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys. |
Home Technologies: | Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines. |
Lawn and Garden: | Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers. |
Personal Care: | Hair Cutting, Hair Care, Massagers. |
Power Tools: | Drills and Drivers, Sanders, Grinders, Polishers, Saws. |
Camera and Optical: | Video, Cameras, Projectors. |
The Basics of a Planetary Motor
A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.
Self-centering planetary gears
This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
High torque
Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
High efficiency
A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
High cost
In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.
editor by czh 2022-12-19
China 24V 2HP Brushless Planetary Magnet Electric DC Gear Geared Motors with Hot selling
Product Description
Environmental conditions | -20ºC~50ºC |
Magnet material | Bonder NdfeB |
Number of poles/phase | 8/3 |
Insulation class | Class B |
Insulation resistance | 100MΩmin 500VDC |
Electrical Specifications
Model | 42BL40-240-2 | 42BL60-240-2 | 42BL80-240-2 | |
Number of Phases | 8 | |||
voltage | VDC | 24 | ||
Rated speed | rpm | 4000 | ||
Rated torque | N.m | 0.063 | 0.125 | 0.185 |
Rated current | Amps. | 1.8 | 3.5 | 5.2 |
Rated power | Watt. | 27 | 52 | 78 |
Max torque | N.m | 0.185 | 0.38 | 0.55 |
Torque constant | N.m/Amps. | 0.035 | 0.041 | 0.042 |
Back EMF | V/Krpm | 3.17 | 3.13 | 3.28 |
Rotor inertia | kg.mm2 | 5.2 | 9.3 | 13.4 |
Lenght | mm | 40 | 60 | 80 |
Net Weight | Kg | 0.3 | 0.47 | 0.65 |
Dimensions
We hold 2 mainly production lines, 1 of which is the brushless motor. The delivery time will be about 10-20 days if the quantity is less than 300 pcs.
US $14.99 / Piece | |
10 Pieces (Min. Order) |
###
Application: | Universal, Industrial, Power Tools |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
###
Samples: |
US$ 17/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Environmental conditions | -20ºC~50ºC |
Magnet material | Bonder NdfeB |
Number of poles/phase | 8/3 |
Insulation class | Class B |
Insulation resistance | 100MΩmin 500VDC |
###
Model | 42BL40-240-2 | 42BL60-240-2 | 42BL80-240-2 | |
Number of Phases | 8 | |||
voltage | VDC | 24 | ||
Rated speed | rpm | 4000 | ||
Rated torque | N.m | 0.063 | 0.125 | 0.185 |
Rated current | Amps. | 1.8 | 3.5 | 5.2 |
Rated power | Watt. | 27 | 52 | 78 |
Max torque | N.m | 0.185 | 0.38 | 0.55 |
Torque constant | N.m/Amps. | 0.035 | 0.041 | 0.042 |
Back EMF | V/Krpm | 3.17 | 3.13 | 3.28 |
Rotor inertia | kg.mm2 | 5.2 | 9.3 | 13.4 |
Lenght | mm | 40 | 60 | 80 |
Net Weight | Kg | 0.3 | 0.47 | 0.65 |
US $14.99 / Piece | |
10 Pieces (Min. Order) |
###
Application: | Universal, Industrial, Power Tools |
---|---|
Operating Speed: | Constant Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
###
Samples: |
US$ 17/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Environmental conditions | -20ºC~50ºC |
Magnet material | Bonder NdfeB |
Number of poles/phase | 8/3 |
Insulation class | Class B |
Insulation resistance | 100MΩmin 500VDC |
###
Model | 42BL40-240-2 | 42BL60-240-2 | 42BL80-240-2 | |
Number of Phases | 8 | |||
voltage | VDC | 24 | ||
Rated speed | rpm | 4000 | ||
Rated torque | N.m | 0.063 | 0.125 | 0.185 |
Rated current | Amps. | 1.8 | 3.5 | 5.2 |
Rated power | Watt. | 27 | 52 | 78 |
Max torque | N.m | 0.185 | 0.38 | 0.55 |
Torque constant | N.m/Amps. | 0.035 | 0.041 | 0.042 |
Back EMF | V/Krpm | 3.17 | 3.13 | 3.28 |
Rotor inertia | kg.mm2 | 5.2 | 9.3 | 13.4 |
Lenght | mm | 40 | 60 | 80 |
Net Weight | Kg | 0.3 | 0.47 | 0.65 |
Benefits of a Planetary Motor
Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Solar gear
The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.
Sun gear
The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Planetary gear
A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.
Planetary gearbox
A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Planetary gear motor
Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.
editor by czh 2022-11-24