Product Description
Product Description
Stepper motors, AC servo motors and brushless DC motors are avaiable to customized for the world, NEMA 11, 14, 16, 17, 23, 24, 34 stepper motor, 50W, 100W, 200W, 400W, 500W, 750W, 1000W, 1200W AC servo motor, and brushless DC motor are all included.
The derived products are widely used in ATM machines, digital scanners, stylus printers, plotters, slot machines, CD-ROM drivers, stage lighting, camera lenses, CNC machines, medical machines, 3D printers for industry and our life.
All the derived products of us can be customized for your needs.
Performance and parameters can be customized, just simply send your motor diagram or samples to us, the best price will be sent to you soon for your reference
Product Parameters
specifications: IHSS |
|||
Number of Phase |
2 |
Rotor Inertia |
1800g.cm² |
Step Angle |
1.8° |
Dielectric Strength |
500VDC |
Step Angle Accuracy |
±0.09° |
Insulation Resistance |
100MOHM (500VDC) |
Rated Current/phase |
6A |
Insulation Class (UL) |
B |
Resistance/phase |
0.43Ω±10% |
Temperature Rise Max |
80K |
Inductance/phase |
2.7MH±20% |
Radial Play |
Max 0.571mm (load 450g) |
Holding Torque |
4.5Nm |
Axial Play |
Max 0.075mm (load 920g) |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal |
---|---|
Speed: | Variable Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Protection Type |
Number of Poles: | NEMA Standard Stepper Motor |
Samples: |
US$ 120/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How is the efficiency of a gear motor measured, and what factors can affect it?
The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:
Measuring Efficiency:
The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:
Efficiency = (Pout / Pin) * 100%
The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:
Pout = T * ω
The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:
Pin = V * I
By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.
Factors Affecting Efficiency:
Several factors can influence the efficiency of a gear motor. Here are some notable factors:
- Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
- Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
- Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
- Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
- Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
- Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.
By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.
Can gear motors be used for precise positioning, and if so, what features enable this?
Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:
1. Gear Reduction:
One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.
2. High Resolution Encoders:
Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.
3. Closed-Loop Control:
Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.
4. Stepper Motors:
Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.
5. Servo Motors:
Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.
6. Motion Control Algorithms:
Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.
By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.
How does the gearing mechanism in a gear motor contribute to torque and speed control?
The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:
The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.
Torque Control:
The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.
By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.
Speed Control:
The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.
By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.
In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.
editor by CX 2024-04-29
China factory AC DC Three Single Phase Asynchronous Induction BLDC Brushless Electrical Stepper Servo Gear Electric Motor vacuum pump electric
Product Description
AC DC Three Single Phase Asynchronous Synchronous Induction BLDC Brushless Electrical Stepper Servo Gear Stainless Steel Electric Motor
Product Description
1. Reliable performance, safe and easy operation.
2. Low noise, low vibration, and light in weight.
3. Wide range of speed, torque, and motor types.
4. Mounting dimensions conform to IEC standards, Gost standards, Nema standards.
Product Parameters
Power | 0.06 ~ 2000kw |
Typical motor types | Asynchronous motor, Synchronous motor, DC brush motor, DC brushless motor Stepper motor, Servo motor Aluminum motor, Cast iron motor, Stainless steel motor Gear motor, with worm gearbox, helical gearbox, planetary gearbox, etc. |
Frame Size | 56 ~ 630 |
Phase | Single or Three |
Efficiency Class | IE1 ~ IE4 |
Poles | 2, 4, 6, 8 poles |
Protection Class | IP44, IP54, IP55, IP56, IP65, IP67 IP69K waterproof |
Insulation Class | B, F, H |
Mounting Type | B14, B3, B5, B35, B34 |
Ambient Temperature | -15 ~ +40 °C, or customized |
Altitude | ≤1000M |
Material | Aluminum/Cast Iron/Stainless steel food grade |
Related Product
Three Phase AC Motor Single Phase AC Motor VFD Inverter Duty Motor
Synchronous AC Motor DC Brush or Brushless Motor Stepper Motor
Servo Motor Stainless Steel Motor Various Types of Gearbox
Company Profile
Certifications
FAQ
Q: Can you make the electric motor with customization?
A: Yes, we can customize per your request, like power, voltage, speed, shaft size, wires, connectors, capacitors, terminal box, IP grade, etc.
Q: Do you provide samples?
A: Yes. A sample is available for testing.
Q: What’s your lead time?
A: Standard products need 5-30 days, a bit longer for customized products.
Q: Do you provide technical support?
A: Yes. Our company has a design and development team, we can provide technical support if you
need.
Q: How to ship to us?
A: It is available by air, by sea, or by train.
Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.
Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.
Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 12 hours. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Single or Three Phase |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample Blue or Silver
|
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do variable frequency drives (VFDs) impact the performance of AC motors?
Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:
- Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
- Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
- Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
- Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
- Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
- Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.
In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.
What are the common signs of AC motor failure, and how can they be addressed?
AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:
- Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
- Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
- Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
- Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
- Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
- Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.
It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.
How does the speed control mechanism work in AC motors?
The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.
Speed Control in Induction Motors:
Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:
- Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
- Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
- Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.
Speed Control in Synchronous Motors:
Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:
- Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
- Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
- DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.
These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.
editor by CX 2024-03-30
China wholesaler NEMA17 (42mm) Planetary DC Gear Stepper Motor with Planetary Gearbox Reduction Ratio 5.18: 1 vacuum pump electric
Product Description
nema17 Planetary Gearbox Stepping Motor price on hot sale
General Specificati
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(12mm from flange) | ≤80N |
Max.Shaft Axial Load | ≤30N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1.5° |
Electrical Specification:
Model No. | Step Angle | Motor Length | Current /Phase |
Resistance /Phase |
Inductance /Phase |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm | Kg | |
JK42HS34-1334 | 1.8 | 34 | 1.33 | 2.1 | 2.5 | 2.2 | 4 | 120 | 34 | 0.22 |
JK42HS34-0406 | 1.8 | 34 | 0.4 | 24 | 15 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS40-1684 | 1.8 | 40 | 1.68 | 1.65 | 3.2 | 3.6 | 4 | 150 | 54 | 0.28 |
JK42HS40-1206 | 1.8 | 40 | 1.2 | 3 | 2.7 | 2.9 | 6 | 150 | 54 | 0.28 |
JK42HS48-1684 | 1.8 | 48 | 1.68 | 1.65 | 2.8 | 4.4 | 4 | 260 | 68 | 0.35 |
JK42HS48-1206 | 1.8 | 48 | 1.2 | 3.3 | 2.8 | 3.17 | 6 | 260 | 68 | 0.35 |
JK42HS60-1704 | 1.8 | 60 | 1.7 | 3 | 6.2 | 7.3 | 4 | 280 | 102 | 0.5 |
JK42HS60-1206 | 1.8 | 60 | 1.2 | 6 | 7 | 5.6 | 6 | 280 | 102 | 0.5 |
42HS Planetary Gearbox Specifications
Reduction ratio | 3.71 | 5.18 | 13.76 | 19.2 | 26.8 | 51 | 71 | 99.5 | 139 |
Number of gear trains | 1 | 2 | 3 | ||||||
Length(L2) mm | 27.3 | 35 | 42.7 | ||||||
Max.rated torque kg.cm | 20 | 30 | 40 | ||||||
Short time permissible torque kg.cm | 40 | 60 | 80 | ||||||
Weight g | 350 | 450 | 550 |
Products of special request can be made according to the customer request !
company information:
our certification:
Our Company offers 3 major series of products:Hybrid Stepper motors, Brushless Dc motor and Dc Brush motor.
We are always continues develop new type models.If you need other kinds of parts, please don’t hesitate to contact us.
Amy Gao
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Compound |
Function: | Run |
Casing Protection: | Protection Type |
Number of Poles: | 8 |
Samples: |
US$ 21.5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
What are some common challenges or issues associated with gear motors, and how can they be addressed?
Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:
1. Gear Wear and Failure:
Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:
- Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
- Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
- Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.
2. Backlash and Inaccuracy:
Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:
- Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
- Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
- Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.
3. Noise and Vibrations:
Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:
- Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
- Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
- Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.
4. Overheating and Thermal Management:
Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:
- Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
- Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
- Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.
5. Load Variations and Shock Loads:
Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:
- Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
- Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
- Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.
By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2024-03-28
China manufacturer 42jxgt200K/42sth High Torque Solar Tracker NEMA 17 Planetary Gear Stepper Motor with Great quality
Product Description
Product Description
High Torque Solar Tracker Nema 17 Planetary Gear Stepper Motor
Model: 42JXGTS200K/42STH
Voltage: 6 ~ 400V DC
CE, Reach and RoHS approval
Optional components: magnetic/optical encoder; brake; connector
Customized shaft dimensions and technical specifications are available upon requested.
Customized Gear Motors for Typical Applications |
||||
Tarp Gear Motors |
Slow Juicer Motors |
|||
Curtain & Window Motors |
Robot Pool Cleaner Motors |
|||
Door & Gate Motors |
Robot Lawn Mower Motors |
|||
Automatic Pool Cover Motors |
Solar Tracking System Motors |
Packaging & Shipping:
1, Waterproof plastic bag packed in foam box and carton as outer packing.
2, Export wooden box packaging for products.
Company Profile
WHY CHOOSING US:
- Open for general discussion and questions
- Time to market or theatre of operations can be substantially reduced
- Talented team of engineers providing innovative technical solutions
- One stop “supplier” and complete sub-system
- Quality products provided at competitive low cost
- Ability to ship world wide
- On time delivery
- Training at Customer locations
- Fast service on return and repair results
- Many repeated customers
Xihu (West Lake) Dis.zheng Motor Co., Ltd was established in 2003, this is a technology research and development, production, sales and services of state-level high-tech enterprises.
The corporation has established a perfect quality assurance system, achieved ISO9001: 2015 quality Management system, ISO14001 Environmental management system, GB/T28001 Occupational CZPT and Safety Management system.
The corporation professionally manufactures kinds of AC/DC gear motors, planetary gear motors, small gear motors, etc. Which are widely used in industrial automation, medical and health-care equipment, financial instruments, office automation, swimming pool cleaners, high efficiency juice, intelligent lawn mower, solar Automatic tracking system, kinds of massage CZPT care equipment, automatic doors, etc…And has obtained the following Production Certifications: CCC &CE identification, RoHS&REACH certificate, . The mainly markets are the USA, Europe, Israel, South Korea, Japan, ZheJiang , etc.
Certifications
FAQ
Q1: Are you a trading company or manufacturer?
A1: We are a professional OEM manufacturer.
Q2: What is your main product range?
A2: We manufacture both motors and gearboxes. Our main products are various AC/DC Planetary Gear Motors, AC/DC Right Angle Gear Motors, AC/DC Parallel Shaft Gear Motors, Small DC Motors, Compact AC Motors, Brushless DC Gear Motors, Motor Magnets, Gearboxes etc..
Q3: How about the MOQ of your motors?
A3: Customized testing samples are available before serial production.
Q4: What is the warranty period of your motors?
A4: We offer free maintenance in warranty period of 1 year.
Q5: Which shipping ways are available?
A5: DHL, UPS, FedEx, TNT are available for sample shipment. Sea/air/train shipments are available for serial production.
Shipping Cost:
Estimated freight per unit. |
To be negotiated|
|
---|
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Excited |
Customization: |
Available
| Customized Request |
---|
Benefits of a Planetary Motor
A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Self-centering planet gears ensure a symmetrical force distribution
A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.
Metal gears
A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Encoder
The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.
Durability
One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Cost
The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.
editor by CX 2023-05-11
China Hybrid NEMA23 Stepper Planetary Gear Motor motorbase
Solution Description
hybrid nema23 stepper planetary equipment motor
one.Technological technical specs:
Common Specifictions:
Stage Accuracy……………………………±5%
Temperature Rise………………………80°C Max
Ambient temperature Selection………………-20°C-+50°C
Insulation Resistance………………100MΩMin.500VC DC
Dielectric Strenght……………………500V AC 1 moment
Model | Step angel (°) | Motor Duration L(mm) | Rate Voltage (V) |
Fee Current (A) |
Period Resistance (Ω) |
Phase Inductance (mH) |
Holding Torque (kg.cm) |
Lead Wire (NO.) |
Gear Ratio |
Rotor Inertia (g.cm) |
Detent Torque (g.cm) |
Motor Bodyweight (kg) |
57BYGH009-06BAG30 | one.eight | 41 | five.7 | one | 5.7 | 5.7 | three.9 | six | thirty:1 | one hundred twenty | .21 | .45 |
57BYGH206-05BAG10 | one.8 | 51 | 6.6 | 1 | six.six | eight.two | seven.2 | 6 | 10:1 | 275 | .36 | .sixty five |
57BYGH402AG15 | one.8 | fifty six | twelve | .six | twenty | 29 | 8.five | six | fifteen:1 | 300 | .four | .seven |
57BYGH630-07AG20 | 1.8 | 76 | 3.2 | 2.eight | 1.thirteen | five | 18.nine | 4 | twenty:one | 480 | .sixty eight | one |
*
Mechanical Dimensions
Wiring diagram
2.Production Flow
3.Business Info
In recent ten several years, Derry has been committed to the manufacture of the motor items and the major goods can be labeled into the adhering to collection, particularly DC motor, DC gear motor, AC motor, AC gear motor, Stepper motor, Stepper equipment motor, Servo motor and Linear actuator sequence.
Our motor items are extensively used in the fields of aerospace industry, automotive market, monetary equipment, household equipment, industrial automation and robotics, health-related equipment, business office equipment, packing equipment and transmission market, offering clients reputable tailored options for driving and controlling.
four.Our Companies
one). General Service:
Swift Reply |
All enquiry or electronic mail be replied in twelve hrs, no hold off for your organization. |
Specialist Team |
Inquiries about items will be replied professionally, specifically, very best guidance to you. |
Quick Lead time |
Sample or modest purchase sent in 7-fifteen times, bulk or customized purchase about thirty days. |
Payment Decision |
T/T, Western Union,, L/C, etc, easy for your business. |
Prior to cargo |
Get images, deliver to clients for confirmation. Only confirmed, can be transported out. |
Language Choice |
Aside from English, you can use your possess language by e-mail, then we can translate it. |
2). Customization Services:
Motor specification(no-load velocity , voltage, torque , diameter, sound, lifestyle, testing) and shaft length can be tailor-produced in accordance to customer’s demands.
five.Deal & Shipping
US $20-40 / Piece | |
1 Piece (Min. Order) |
###
Application: | Monitor |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 40/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Model | Step angel (°) | Motor Length L(mm) | Rate Voltage (V) |
Rate Current (A) |
Phase Resistance (Ω) |
Phase Inductance (mH) |
Holding Torque (kg.cm) |
Lead Wire (NO.) |
Gear Ratio |
Rotor Inertia (g.cm) |
Detent Torque (g.cm) |
Motor Weight (kg) |
57BYGH009-06BAG30 | 1.8 | 41 | 5.7 | 1 | 5.7 | 5.7 | 3.9 | 6 | 30:1 | 120 | 0.21 | 0.45 |
57BYGH206-05BAG10 | 1.8 | 51 | 6.6 | 1 | 6.6 | 8.2 | 7.2 | 6 | 10:1 | 275 | 0.36 | 0.65 |
57BYGH402AG15 | 1.8 | 56 | 12 | 0.6 | 20 | 29 | 8.5 | 6 | 15:1 | 300 | 0.4 | 0.7 |
57BYGH630-07AG20 | 1.8 | 76 | 3.2 | 2.8 | 1.13 | 5 | 18.9 | 4 | 20:1 | 480 | 0.68 | 1 |
###
Quick Reply |
All enquiry or email be replied in 12 hours, no delay for your business. |
Professional Team |
Questions about products will be replied professionally, exactly, best advice to you. |
Short Lead time |
Sample or small order sent in 7-15 days, bulk or customized order about 30 days. |
Payment Choice |
T/T, Western Union,, L/C, etc, easy for your business. |
Before shipment |
Take photos, send to customers for confirmation. Only confirmed, can be shipped out. |
Language Choice |
Besides English, you can use your own language by email, then we can translate it. |
US $20-40 / Piece | |
1 Piece (Min. Order) |
###
Application: | Monitor |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 40/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Model | Step angel (°) | Motor Length L(mm) | Rate Voltage (V) |
Rate Current (A) |
Phase Resistance (Ω) |
Phase Inductance (mH) |
Holding Torque (kg.cm) |
Lead Wire (NO.) |
Gear Ratio |
Rotor Inertia (g.cm) |
Detent Torque (g.cm) |
Motor Weight (kg) |
57BYGH009-06BAG30 | 1.8 | 41 | 5.7 | 1 | 5.7 | 5.7 | 3.9 | 6 | 30:1 | 120 | 0.21 | 0.45 |
57BYGH206-05BAG10 | 1.8 | 51 | 6.6 | 1 | 6.6 | 8.2 | 7.2 | 6 | 10:1 | 275 | 0.36 | 0.65 |
57BYGH402AG15 | 1.8 | 56 | 12 | 0.6 | 20 | 29 | 8.5 | 6 | 15:1 | 300 | 0.4 | 0.7 |
57BYGH630-07AG20 | 1.8 | 76 | 3.2 | 2.8 | 1.13 | 5 | 18.9 | 4 | 20:1 | 480 | 0.68 | 1 |
###
Quick Reply |
All enquiry or email be replied in 12 hours, no delay for your business. |
Professional Team |
Questions about products will be replied professionally, exactly, best advice to you. |
Short Lead time |
Sample or small order sent in 7-15 days, bulk or customized order about 30 days. |
Payment Choice |
T/T, Western Union,, L/C, etc, easy for your business. |
Before shipment |
Take photos, send to customers for confirmation. Only confirmed, can be shipped out. |
Language Choice |
Besides English, you can use your own language by email, then we can translate it. |
Benefits of a Planetary Motor
If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.
planetary gears
Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
planetary gearboxes
A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?
planetary gear motors
When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
planetary gears vs spur gears
A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
planetary gearboxes as a compact alternative to pinion-and-gear reducers
While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt
editor by czh 2023-01-23
China High Torque Micro NEMA17 Planetary Gear Reducer Stepper Motor for CNC Kit ac motor
Solution Description
Product Description
Planetary Equipment Stepping Motor :
Precision high-end upgrade with Nema8, Nema 11, Nema14, Nema 17, Nema23, Nema 24
stepper motor low noise, low vibration, firm and durable. Increase torque at low speed.
Reduction ratio:1:3.7 , 1:5.2 , 1:14 , 1:19 ,1:27 ,1:51 , 1:71 ,1:100 ,1:139 , 1:189 ,1:264 , 1:369 ,And 48 hours delivery , in stock .
Application:
Automation control, medical equipment, textile machinery,and packaging machinery fields. Not only in the field of the automation industry, it also has a good use status in the home. Products with low speed and inertia are often seen: electric curtains, electric shutters, etc
Solution Parameters
Planetary Gear Box Specification:
Housing Substance | Steel |
Bearing at Output | Ball Bearings |
Max.Radial Load(10mm from flange) | 200N |
Max.Shaft Axial Load | 100N |
Radial Engage in of Shaft (around to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1 stage≤1°,2stage≤1.2°,3stage≤1.5° |
42HS Hybrid Stepping Motor Technical specs:
Model No. | Step Angle | Motor Size(L1) | Rated | Existing | Resistance | Inductance | Holding Torque | # of Leads | Rotor Inertia | Mass | Max.Equipment Ratio |
Voltage | /Section | /Phase | /Period | ||||||||
Solitary Shaft | ( °) | (L)mm | V | A | Ω | mH | mN.m | No. | g.cm2 | Kg | |
42HSC1409 | one.eight | 34 | two.ninety three | 1.33 | two.2 | three.five | 270 | four | 30 | .22 | ≤1:369 |
42HSC4409 | one.8 | 40 | 2.five | one.five | 1.sixty five | 3.three | 380 | four | forty | .3 | ≤1:369 |
42HSC1409 Planetary Gearbox Requirements: | ||||||||||||
Reduction ratio | 3.71 | five.eighteen | fourteen | 19 | 27 | fifty one | seventy one | a hundred | 139 | 189 | 264 | 369 |
Overall Top(L1+L2) (mm) | 65.five | 65.5 | seventy six.1 | seventy six.1 | 76.one | 86.five | 86.five | 86.5 | 86.five | 96.nine | 96.9 | ninety six.9 |
Output torque ( mN.m) | 902 | 1259 | 3062 | 4155 | 5000 | 10000 | 10000 | 10000 | 10000 | 10000 | ten thousand | 10000 |
Complete Excess weight(g) | 428 | 428 | 510 | 510 | 510 | 592 | 592 | 592 | 592 | 674 | 674 | 674 |
Variety of equipment trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Size(L2) (mm) | 31.five | 42.1 | 52.five | 62.nine | ||||||||
Efficiency | 90% | 81% | 73% | 66% |
42HSC4409 Planetary Gearbox Specifications: | ||||||||||||
Reduction ratio | 3.71 | five.eighteen | fourteen | 19 | 27 | fifty one | 71 | one hundred | 139 | 189 | 264 | 369 |
Overall Peak(L1+L2) (mm) | seventy one.five | seventy one.five | eighty two.one | 82.1 | eighty two.1 | ninety two.five | 92.5 | 92.5 | 92.5 | 102.nine | 102.9 | 102.nine |
Output torque ( mN.m) | 1269 | 1772 | 4309 | 5000 | 5000 | ten thousand | 10000 | ten thousand | ten thousand | ten thousand | 10000 | 10000 |
Overall Fat(g) | 508 | 508 | 590 | 590 | 590 | 672 | 672 | 672 | 672 | 754 | 754 | 754 |
Amount of equipment trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Length(L2) (mm) | 31.five | 42.one | 52.5 | 62.9 | ||||||||
Performance | 90% | 81% | 73% | 66% |
Thorough Photographs
Company Profile
ZheJiang UMot Technological innovation Co., Ltd. specializes in R&D and sales of stepper motors, servo motors, linear modules and connected movement manage merchandise, customizing and creating large-top quality motor products for users with special needs close to the world, and delivering all round options for movement manage methods. Merchandise are exported to more than 30 nations around the world and regions such as the United States, Germany, France, Italy, Russia, and Switzerland. The firm’s major items and program layout have been commonly utilized in automation control, precision devices, health-related products, sensible property, 3D printing and a lot of other fields.
Our organization has been recognized as a large-tech enterprise by appropriate departments, has a complete quality administration system, has acquired ISO9001, CE, RoHs and other relevant certifications, and holds a amount of electrical patent certificates. “Concentration, Professionalism, Focus” in the subject of automation of motor R&D and technique handle remedies is the firm’s business function. “Be your most trustworthy companion” is the firm’s provider philosophy. We have usually been aiming to “make first-course merchandise with expert technology”, maintain pace with the instances, innovate consistently, and supply a lot more end users with much better goods and solutions.
FAQ
1. Delivery method:
1)Worldwide Categorical supply DHL&FEDEX &UPS&TNT& 7-10days
two)Shipping and delivery by air 7-ten days
3)transport by sea, supply time relies upon on the spot port.
2. Complex Assist:
We can supply you with professional specialized assistance. And our products good quality promise is 6 months. Also, we accept items personalized.
three. Why must you acquire from us, not from other suppliers?
Expert one-to-1 motor customized. The world’s huge company of selection for high-quality suppliers. ISO9001:2008 good quality administration method certification, by way of the CE, ROHS certification.
4. How to decide on types?
Just before buying, make sure you get in touch with us to affirm product No. and requirements to steer clear of any misunderstanding.
5. Are you a manufacturing unit?
Yes, we are a factory, and we produce stepper motor/driver, Servo motor/driver.
US $31.2-54.68 / Piece | |
1 Piece (Min. Order) |
###
Application: | Robot |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Control, Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 42/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(10mm from flange) | 200N |
Max.Shaft Axial Load | 100N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1 stage≤1°,2stage≤1.2°,3stage≤1.5° |
###
Model No. | Step Angle | Motor Length(L1) | Rated | Current | Resistance | Inductance | Holding Torque | # of Leads | Rotor Inertia | Mass | Max.Gear Ratio |
Voltage | /Phase | /Phase | /Phase | ||||||||
Single Shaft | ( °) | (L)mm | V | A | Ω | mH | mN.m | No. | g.cm2 | Kg | |
42HSC1409 | 1.8 | 34 | 2.93 | 1.33 | 2.2 | 3.5 | 270 | 4 | 30 | 0.22 | ≤1:369 |
42HSC4409 | 1.8 | 40 | 2.5 | 1.5 | 1.65 | 3.3 | 380 | 4 | 40 | 0.3 | ≤1:369 |
###
42HSC1409 Planetary Gearbox Specifications: | ||||||||||||
Reduction ratio | 3.71 | 5.18 | 14 | 19 | 27 | 51 | 71 | 100 | 139 | 189 | 264 | 369 |
Total Height(L1+L2) (mm) | 65.5 | 65.5 | 76.1 | 76.1 | 76.1 | 86.5 | 86.5 | 86.5 | 86.5 | 96.9 | 96.9 | 96.9 |
Output torque ( mN.m) | 902 | 1259 | 3062 | 4155 | 5000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
Total Weight(g) | 428 | 428 | 510 | 510 | 510 | 592 | 592 | 592 | 592 | 674 | 674 | 674 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Length(L2) (mm) | 31.5 | 42.1 | 52.5 | 62.9 | ||||||||
Efficiency | 90% | 81% | 73% | 66% |
###
42HSC4409 Planetary Gearbox Specifications: | ||||||||||||
Reduction ratio | 3.71 | 5.18 | 14 | 19 | 27 | 51 | 71 | 100 | 139 | 189 | 264 | 369 |
Total Height(L1+L2) (mm) | 71.5 | 71.5 | 82.1 | 82.1 | 82.1 | 92.5 | 92.5 | 92.5 | 92.5 | 102.9 | 102.9 | 102.9 |
Output torque ( mN.m) | 1269 | 1772 | 4309 | 5000 | 5000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
Total Weight(g) | 508 | 508 | 590 | 590 | 590 | 672 | 672 | 672 | 672 | 754 | 754 | 754 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Length(L2) (mm) | 31.5 | 42.1 | 52.5 | 62.9 | ||||||||
Efficiency | 90% | 81% | 73% | 66% |
US $31.2-54.68 / Piece | |
1 Piece (Min. Order) |
###
Application: | Robot |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Control, Driving |
Number of Poles: | 2 |
###
Samples: |
US$ 42/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(10mm from flange) | 200N |
Max.Shaft Axial Load | 100N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1 stage≤1°,2stage≤1.2°,3stage≤1.5° |
###
Model No. | Step Angle | Motor Length(L1) | Rated | Current | Resistance | Inductance | Holding Torque | # of Leads | Rotor Inertia | Mass | Max.Gear Ratio |
Voltage | /Phase | /Phase | /Phase | ||||||||
Single Shaft | ( °) | (L)mm | V | A | Ω | mH | mN.m | No. | g.cm2 | Kg | |
42HSC1409 | 1.8 | 34 | 2.93 | 1.33 | 2.2 | 3.5 | 270 | 4 | 30 | 0.22 | ≤1:369 |
42HSC4409 | 1.8 | 40 | 2.5 | 1.5 | 1.65 | 3.3 | 380 | 4 | 40 | 0.3 | ≤1:369 |
###
42HSC1409 Planetary Gearbox Specifications: | ||||||||||||
Reduction ratio | 3.71 | 5.18 | 14 | 19 | 27 | 51 | 71 | 100 | 139 | 189 | 264 | 369 |
Total Height(L1+L2) (mm) | 65.5 | 65.5 | 76.1 | 76.1 | 76.1 | 86.5 | 86.5 | 86.5 | 86.5 | 96.9 | 96.9 | 96.9 |
Output torque ( mN.m) | 902 | 1259 | 3062 | 4155 | 5000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
Total Weight(g) | 428 | 428 | 510 | 510 | 510 | 592 | 592 | 592 | 592 | 674 | 674 | 674 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Length(L2) (mm) | 31.5 | 42.1 | 52.5 | 62.9 | ||||||||
Efficiency | 90% | 81% | 73% | 66% |
###
42HSC4409 Planetary Gearbox Specifications: | ||||||||||||
Reduction ratio | 3.71 | 5.18 | 14 | 19 | 27 | 51 | 71 | 100 | 139 | 189 | 264 | 369 |
Total Height(L1+L2) (mm) | 71.5 | 71.5 | 82.1 | 82.1 | 82.1 | 92.5 | 92.5 | 92.5 | 92.5 | 102.9 | 102.9 | 102.9 |
Output torque ( mN.m) | 1269 | 1772 | 4309 | 5000 | 5000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
Total Weight(g) | 508 | 508 | 590 | 590 | 590 | 672 | 672 | 672 | 672 | 754 | 754 | 754 |
Number of gear trains | 1 | 2 | 3 | 4 | ||||||||
Reducer Length(L2) (mm) | 31.5 | 42.1 | 52.5 | 62.9 | ||||||||
Efficiency | 90% | 81% | 73% | 66% |
How to Assemble a Planetary Motor
A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.
VPLite
If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
VersaPlanetary
The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.
Self-centering planetary gears
A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Encoders
A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.
Cost
There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Applications
There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.
editor by czh 2023-01-20
in Vladivostok Russian Federation sales price shop near me near me shop factory supplier Step Stepping High Torque Hybrid Electric Reduction Stepper Planetary Gear Motor manufacturer best Cost Custom Cheap wholesaler
If you are interested in any of our items or would like to discuss a prospective buy, please really feel cost-free to speak to us. We have exported our goods to Korea, Turkey, Bulgaria, Romania, Russia, Italy, Norway, the Usa, Canada, and so forth. Our main goods are Needle Roller bearings, Cylindrical Roller Bearings, Rod end Bearings, Spherical basic bearings, Keep track of roller Bearings for Guideway, Roller Bearings, Mix Bearings for forklifts, Drinking water Pump Bearings, SNR Car Bearings and all types of Spherical Bearings. Action Stepping Large Torque Hybrid Electrical Reduction Stepper Equipment EPT
Features:
one. Placement mistake correction and never get rid of actions
2. Substantial torque at large speed
three. Quick reaction and excellent acceleration
4. EPT recent adjustment based on load, reduce temperature rising.
5. substantial dynamic overall performance at acceleration and deceleration, No vibration from high pace to zero velocity.
Product photo:
Specification:
Merchandise Title | Electrical Stepper EPT |
Dimensions | Nema 8(20mm), eleven(28mm), 14(35mm), sixteen(39mm), 17(42mm), 23(57mm), 24(60mm), 34(86mm) |
Phase Angle | Diploma .nine, 1.two, 1.8(Optional or Customized) |
Torque(oz.in) | Up to three.eleven, 5.7, seventeen, forty one, 56, 85, 113, 425 |
Rated Current | .1A~10A (A/Phase) |
Typical Purposes | Printers, Labeling EPT, Laser cutting EPT, SMT tools, EPT EPT, Dispensing EPT, Scorching stamping EPT, Manipulator, Robotic, Analytical and Medical Instruments, Textile EPT, Embroidery EPT, EPT Telescope Positioning Techniques, Substantial Velocity Dome Digicam |
FAQ
Q: Can you make the stepper motor with customization?
A: Indeed, we can customise for every your request, like EPT, voltage, speed, shaft measurement, wires, connectors, IP quality, and so on.
Q: Do you give samples?
A: Indeed. Sample is accessible for screening.
Q: What is your MOQ?
A: It is 10pcs for the commencing of our company.
Q: What is your guide time?
A: StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd solution require 5-30days, a little bit EPTer for customized merchandise.
Q: Do you provide EPT assist?
A: Of course. Our company have design and deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment staff, we can give EPT help if you
require.
Q: How to ship to us?
A: It is available by air, or by sea, or by practice.
Q: How to shell out the cash?
A: T/T and L/C is chosen, with different forex, incXiHu (West Lake) Dis.Hu (West Lake) Dis. USD, EUR, RMB, etc.
Q: How can I know the item is suited for me?
A: gt1ST verify drawing and specification gt2nd check sample gt3rd start mass production.
Q: Can I occur to your business to go to?
A: Yes, you are welcome to check out us at any time.
Q: How shall we make contact with you?
A: You can send inquiry directly, and we will react within 24 hrs.
in Rayong Thailand sales price shop near me near me shop factory supplier Single Phase AC Electrical Fan High Power Electric Washing Machine Brushless DC BLDC Engine Generator Stepper Servo Worm Gear Motor manufacturer best Cost Custom Cheap wholesaler
we are assured to give our customers flexible and diversified providers. The group has taken element in the generating and revising of ISO/TC100 international chain normal a number of many years in accomplishment and hosted the 16th ISO/TC100 Worldwide annual assembly in 2004. Ever-Energy Group CO., LTD. IS Professional IN Producing ALL Sorts OF MECHANICAL TRANSMISSION AND HYDRAULIC TRANSMISSION LIKE: PLANETARY GEARBOXES, WORM REDUCERS, IN-LINE HELICAL Equipment Velocity REDUCERS, PARALLEL SHAFT HELICAL Gear REDUCERS, HELICAL BEVEL REDUCERS, HELICAL WORM Equipment REDUCERS, AGRICULTURAL GEARBOXES, TRACTOR GEARBOXES, Auto GEARBOXES, PTO Travel SHAFTS, Unique REDUCER & Connected Equipment Elements AND OTHER Relevant Items, SPROCKETS, HYDRAULIC Program, VACCUM PUMPS, FLUID COUPLING, Equipment RACKS, CHAINS, TIMING PULLEYS, UDL Velocity VARIATORS, V PULLEYS, HYDRAULIC CYLINDER, Equipment PUMPS, SCREW AIR COMPRESSORS, SHAFT COLLARS Minimal BACKLASH WORM REDUCERS AND SO ON. EPTrushelss dc motor FH350-a hundred and twenty
Motor Description:
Product | EPT(w) | Voltage(V) | Torque(NM) | Recent | Efficiency |
FH350-a hundred and twenty | 350 | 36 | one.1 | 11.five | eighty five |
FH550-one hundred twenty | 550 | 36 | 1.nine | eighteen | eighty five |
FH750-a hundred and twenty | 750 | 36 | 2.five | 24 | 85 |
one.Insulation Course:EPT F
3.Application:Deep water motor/Remotely Operated Motor vehicle/ROV Robotic/submersible motor/Special potting motor/Diving motor
four.Our motors functionality(information) are per customers` requirments.
5.Motor wires are cooper and some could be employed aluminium wire to conserve price
6.Motors could be used ball bearing and oil bear(Sleeve bearing) equally.
7.Stators could be chilly steel and silicon steel
eight.We can use each one-shot thermal fuse and recoverable thermal fuse
nine.Our AC motors are of higher performance, exceptional good quality, low vitality usage, EPT lifestyle and aggressive price.
Fine Watt motor concentrate on offering motor remedies to smart merchandise for property equipment ,like EPTLDC,Capacitor motor,shaded pole motor,EPT motor and mini generator. Our motors are commonly used in kitchen area,air conditional,Ice upper body,washing EPT,and so on. Consumers identify not only in EPT domestic ,also oversea from Asia to European and Amecica. Our engineer with 20 several years knowledge in motor style and deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment,earn a good deal of motor inovation EPT award,Our engineer also give technological assist to other big facotry.we believe we alwaEPTcan discover the best answer for your product.
Organization FAQ
(1) Q: What type motors you can provide?
A:For now,we primarily give Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Fridge Motor,Hair Dryer Motor EPTlenEPTMotor Mixer Motor,
EPTLDC Motor,Shade Pole Motor,Capacitor Motor, PMDC Motor,Synchronous Motor,and many others
(2) Q: Is it achievable to pay a visit to your manufacturing unit
A: Positive. We alwaEPTlike to satisfy our buyer encounter to experience,this is far better for understXiHu (West Lake) Dis.Hu (West Lake) Dis..EPTut make sure you kindly preserve us posted a handful of daEPTEPT so we can make good arrangement.
(3) Q: Can I get some samples
A: It depends. If only a couple of samples for private use or substitute, I am scared it will be difficult for us to give, simply because all of our motors are EPT and no inventory offered if there is no additional demands. If just sample screening prior to the formal orEPTand our MOQ, value and other conditions are suitable, we will provide samples.
(4) Q: Is there a MOQ for your motors?
A: Of course. The MOQ is among one thousand~ten,000pcs for diverse versions following sample acceptance.
EPTut it really is also all right for us to take smaller sized lots like a couple of dozens, hundreds or 1000’s
For the original 3 orders soon after sample approval.For samples, there is no MOQ requirement. EPTut the much less the much better (like no much more than 5pcs) on situation that the amount is adequate in scenario any alterations necessary right after original testing.
(five)Q: What benefit do you have?
A: For motors, we have top quality guarantee, if there is probelm motor right after inspection in buyer property,we will change .
For service, we supply 24 hrs complex assist and barrier-free of charge communication with excellent services people.
Specialized support: Other than supply real motor merchandise,we can also provide motor technical supporting seperately to our consumer.Our engineers are represent the most superior techonogy.