Tag Archives: brake vacuum pump

China high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price vacuum pump brakes

Product Description

Product Description

  Model selection

1.Installation method: Horizontal ( foot) installation, Vertical ( flange) installation

2.Requirement for the output shaft of motor: 18,22,28,32,40,50mm

3.Power requirement: 100W, 200W….3700W

4.Speed of the motor you need

5.Ratio: Motor input speed/output speed. Or advise your required output speed. We have 3,5,10…1800

6.Voltage: Three phase 220V/380V 50/60Hz; Single phase 110, 220V 50/60Hz

7.Additional parts:DC 90V brake unit; Hand release brake unit; DC 24V brake unit, 110V forced draft fan; 220V forced draft fan.

8.Position of terminal box: view from output shaft

9.Wire inlet direction

GH:Horizontal installation gear motor
GV:Vertical installation gear motor
GHM:Horizontal installation straight gear motor
GVM:Vertical installation straight gear motor
GHD :Horizontal installation dual axis gear motor
GVD:Vertical installation dual axis gear motor
 

 

 

Features of AC Gear motor

1.Small size, light weight, knot no noise, compact, maintenance-free 

2.High tightness. Geared motor output section has the configuration of seals and O-ring to avoid grease refluxing and damage of insulation aging .

 3.High efficiency. The gear motor products using the new silicon steel stamping die design, high precision core, strong magnetic properties, geared motor cooling structure using the new shape .

4.Optimal design, the ST ( speed – torque ) features optimized so that gear motors can work for a variety of operating environments.

5.Customized, our company has developed its own design team, geared motors can be customized according to the customer ‘s specific needs specifications.

Application:

Various industrial production lines, coveyor machinery, food machinery, medical machinery, printing machinery, office facility, instrument, automatic mahjong machine
 

Output Shaft

18

22

28

32

40

50

60

Ratio

3~50

3~90

3~200

3~200

3~200

3~200

3~100

Power

100W/200W

100w.

200w.

400w

1/4HP.

1/2HP,

1HP

1/2HP,

1HP,

2HP

1HP,

2HP,

3HP

2.3.5.7.5.10(HP)

7.5HP.

10HP

Output Torque

0.19~19.3

kg-m

0.19~36

kg-m

0.37~69

kg-m

1.3~123

kg-m

1.3~145

kg-m

2.6~267

kg-m

9.8~267

kg-m

Output Speed (RPM)

0.1~1800

0.1~1800

0.1~1800

0.1~1800

0.1~1800

0.1~1800

 

0.1~1800

 

Detailed Photos

Our Advantages

We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price 
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,

FAQ

Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Helical
Gear Shape: Helical
Step: Three-Step
Samples:
US$ 96/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price   vacuum pump brakesChina high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price   vacuum pump brakes
editor by CX 2024-05-17

China Hot selling Silinman 6W AC Brake Motor vacuum pump adapter

Product Description

Technical Standard of Micro AC Gear Motor
Insulation resistance:under normal temperature normal humidity condition,at motor rated operation,use DC500V megger,measure the insulation resistance between the winding and casing, which should be above 100MΩ
Insulation voltage:under normal temperature normal humidity condition,at motor rated operation,apply a voltage 1.5KV(50hz/60hz) between winding and casing for 1 minute without any abnormalities.
Temperature rise:under normal load condition and rated operation, the temperature rise of the winding measured by the resistance method should be within 75K
Insulation level:F(130°C)
Overheat protection: can customize overheat protection device(automatic reset type),115°C automatic stop,85°C±15°C automatic reset
Ambient temperature:-10°C-40°C(No freezing)
Ambient humidity:below 85%(no condensation)

 

Micro AC Gear Motor=Micro AC Motor(Induction motor, reversible motor,torque motor)+Gearbox(Reducer)
Micro AC Motor type:
1)Induction motor, with working form,S1-continuous working;
2)Reversible motor, with working form S2-30min working;
3)Torque motor,

Motor Size:60mm,70mm,80mm,90mm,104mm,120mm
Motor Power:6w,10w,15w,25w,40w,60w,90w,120w,140w,180w,200w,250w,300w,370w,400w,750w,1.5kw
Motor Voltage:AC,1phase110v,1phase220v,1phase230v,3phase220v,3phase380v,3phase220v/380v,and other customized voltages
Motor Poles and Speed:4P,1400rpm/50Hz;1680rpm/60Hz(2P is available)
Motor accessories:electromagnetic brake,terminal box,thermally protection,fan
Output shaft:round shaft,gear shaft
Rotation direction:CW,CCW

 

Micro AC Motor with round shaft 

 

Micro AC Motor with gear shaft

Gearbox type:GK,GS,90mm five-stage
Gearbox size:60mm,70mm,80mm,90mm,104mm,120mm
Gearbox ratio:2K-750K

Decimal middle gearbox:10X

AC motor description:

Gearbox description:

AC Motor Specification:

Gearbox Specification:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Automation Equipment
Operating Speed: Adjust Speed, Constant Speed
Power Source: AC Motor
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4poles and 2poles
Customization:
Available

|

induction motor

What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?

In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:

  • Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
  • Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
  • Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
  • Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
  • Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
  • Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.

AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.

In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Hot selling Silinman 6W AC Brake Motor   vacuum pump adapter	China Hot selling Silinman 6W AC Brake Motor   vacuum pump adapter
editor by CX 2024-05-08

China Good quality High Quality Yej2 AC Three Phase Brake Induction Motor Price vacuum pump design

Product Description

Product Description

Introduction:

    YEJ2, YDEJ2 series electromagnetic brake motors are improved products of YEJ series. It is in accordance with JB/T6456 requirements, and its electrical performance is in accord with Y2 series technical standard. The electric power of the controller should be synchronized with the electric power of the motor.
The electric motors are equipped with the electromagnetic brake on the non-shaft end. When electricity off, the retarding disc will automatically press in endshield which produces friction brake torque and stops the running of motor, the no-load brake duration is changed with the frame size of the motor, the range is 0.15-0.45 seconds. This kind of motor is considered as the driving force of various machinery and widely used in mechanical workout machine tool, transport machinery, package, woodworking, food machinery chemical engineering, textile, construction, shop, roll door machinery.

 

Operating Conditions

Centre height of frame: 63-225mm
Controller’s power:
centre height of frame:100mm, AC220V(after commutate 99V)
centre height of frame:112mm, AC380V(after commutatel70V)
Rated voltage: 380V or order
Rated frequency: 50Hz or 60HZ
Power range:0.12-45kW
Ingress Protection:IP54(or IP55)
Insulation Class: B/F Duty type:SI

Rated Parameters
Base Center Height:63-255 mm                                   Power Range: 0.12-0.45 kW
Nsulation Class: B /f                                                   Protection Class: IP54 (or IP55)
Work System: S1                                                       Rated Voltage: 380V

Mounting Structure:

B3 Frame without foot cover end flange
B35 Frame with foot cover end flange
B5 Frame with foot cover end flange
 

  INSTALLATION SIZE AND OVERALL DILMENSION          
FRAME INSTALLATION SIZE OVERALL DIMENSIONS
IMB5 IMB14 IMB3
  A B C D E F G H K M N P S T M N P S T AB AC AD HD L
56 90 71 36 9 20 3 7.2 56 5.8 65 50 80 M5 2.5 98 80 120 7 3 110 120 110 155 195
63 100 80 40 11 23 4 8.5 63 7 75 60 90 M5 2.5 115 95 140 10 3 130 130 115 165 230
71 112 90 45 14 30 5 11 71 7 85 70 105 M6 2.5 120 110 160 10 3.5 145 145 125 185 225
80 125 100 50 19 40 6 15.5 80 10 100 80 120 M6 3 165 130 200 12 3.5 160 165 135 215 295
90S 140 100 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 335
90L 140 125 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 360
100L 160 140 63 28 60 8 24 100 12 130 110 160 M8 3.5 215 180 250 15 4 205 215 170 255 380
112M 190 140 70 28 60 8 24 112 12 130 110 160 M8 3.5 215 180 250 15 4 145 240 180 285 400
132S 216 140 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 475
132M 216 178 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 515
160M 254 210 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 600
160L 254 254 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 645
180M 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 700
180L 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 740

Factory Advantages

 

1 . 15 years history

 

2. Competitive Price

 

3. Guaranteed Quality 

 

4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days

 

5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.

 

6. High efficiency

 

7. Low noise 

 

8. Long life

 

9. Power saving

 

10. Slight vibration

 

11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;

 

12. Professional Service

 

13. Warranty: 12 months from date of delivery

 

14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on  

 

15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !

 

Detailed Photos

 

 

 

Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer’s application.  Our  based Engineering Design team work with you to ensure the motor meets your individual needs.

2 ,4,6 ,8 and 10 pole operation.  with CE Approvals available
All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 75/PCS
1 PCS(Min.Order)

|

Customization:
Available

|

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Good quality High Quality Yej2 AC Three Phase Brake Induction Motor Price   vacuum pump design		China Good quality High Quality Yej2 AC Three Phase Brake Induction Motor Price   vacuum pump design
editor by CX 2024-05-08

China Good quality 1FL6054-2af21-2ab1 2000W AC Servo Motor with Brake for CHINAMFG vacuum pump engine

Product Description

 

Product Description

 

SIMOTICS S-1FL6 series 1.5KLow Inertia servomotor list

1FL6052-2AF21-2AA1

1FL6052-2AF21-2AB1

1FL6052-2AF21-2AG1

1FL6052-2AF21-2AH1

1FL6052-2AF21-2LA1

1FL6052-2AF21-2LB1

1FL6052-2AF21-2LG1

1FL6052-2AF21-2LH1

1FL6052-2AF21-2MA1

1FL6052-2AF21-2MB1

1FL6052-2AF21-2MG1

1FL6052-2AF21-2MH1

SIMOTICS S-1FL6 series 2KW Low Inertia servomotor list

1FL6054-2AF21-2AA1

1FL6054-2AF21-2AB1

1FL6054-2AF21-2AG1

1FL6054-2AF21-2AH1

1FL6054-2AF21-2LA1

1FL6054-2AF21-2LB1

1FL6054-2AF21-2LG1

1FL6054-2AF21-2LH1

1FL6054-2AF21-2MA1

1FL6054-2AF21-2MB1

1FL6054-2AF21-2MG1

1FL6054-2AF21-2MH1

Company Profile

About FOCUS

* More than 10 years’ experience in the Industrial Automation field.

* Main products range: servo system, PLC, HMI, inverter, sensor, linear motion products, and etc.

* We supply various brands from Germany, Japan, Italy, ZheJiang (China), USA, and etc.

* We have established long-term business with many customers from all over the world.

Why Choose Us

Delivery & Payment

FAQ

Q: Are you reliable?
A: With over 10 years’ experince in industrial automation field, we supply our customers brand new and original goods with high quality. Many old customers trust us very much.

Q:What is the warranty for the goods?
A: All goods have 1 year warranty.

Q: How about the delivery lead time?
A: Normally in 3-5 working days.

Q: How about the shippment?
A: We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q: How about the Payment?
A: We accpet T/T, PayPal, Western Union, credit card, L/C, Alipay, Wechat pay, and etc.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: 3000rpm
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Explosion-Proof Type
Number of Poles: Other
Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China Good quality 1FL6054-2af21-2ab1 2000W AC Servo Motor with Brake for CHINAMFG   vacuum pump engine	China Good quality 1FL6054-2af21-2ab1 2000W AC Servo Motor with Brake for CHINAMFG   vacuum pump engine
editor by CX 2024-05-06

China OEM 0.55kw 0.75kw 3-Phase Small AC Gear Motor with Brake vacuum pump distributors

Product Description

0.55kw 0.75kw 3-phase AC gear motor
Motor Specifications
Motor Parameters

Ratio Output speed Output torque
1/8 HP 1/4 HP 1/2 HP 3/4 HP 1 HP 3/2 HP 2HP 3HP 5HP
0.1KW 0.2KW 0.4KW 0.55KW 0.75KW 1.1KW 1.5KW 2.2KW 3.7KW
Hz
50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60
3 500 600 0.19 0.16 0.37 0.31 0.70 0.60 0.96 0.83 1.30 1.10 1.91 1.61 2.60 2.20 3.80 3.20 6.00 5.50
5 300 360 0.31 0.26 0.62 0.52 1.20 1.00 1.65 1.38 2.20 1.90 3.22 2.78 4.50 3.80 6.72 5.60 11.0 10.0
10 150 180 0.62 0.52 1.24 1.04 2.40 2.00 3.30 2.75 4.50 3.80 6.60 5.7 9.10 7.60 13.7 11.2 22.0 20.0
15 100 120 0.91 0.76 1.80 1.50 3.60 3.00 4.95 4.13 6.80 5.70 9.70 8.36 13.5 11.3 20.1 16.8 32.6 29.8
20 75 90 1.20 1.00 2.40 2.00 4.80 4.00 6.60 5.50 9.00 7.50 13.20 11.0 18.1 15.1 26.8 22.4 43.6 36.0
25 60 72 1.40 1.20 3.00 2.50 6.00 5.00 8.25 6.88 11.2 9.40 16.43 13.79 22.6 18.9 33.6 28.0 53.9 49.53
30 50 60 1.80 1.50 3.60 3.00 7.20 6.00 9.90 8.25 13.5 11.3 19.80 16.57 27.1 22.6 40.3 33.6 64.7 58.8
40 37 45 2.20 1.90 4.60 3.90 9.30 7.80 12.79 10.73 17.5 14.6 25.66 21.41 34.9 29.1 52.0 43.4 86.3 78.4
45 33 40 2.70 2.20 5.40 4.40 10.9 9.10 14.99 12.51 20.6 17.0 30.21 24.93 41.1 34.0 59.8 49.6 98.5 81.7
50 30 36 2.80 2.40 5.70 4.80 11.6 9.70 15.95 13.34 21.9 18.3 32.12 26.84 43.6 36.4 65.1 54.3 107 97.0
60 25 30 3.40 2.90 6.90 5.80 13.9 11.6 19.11 15.95 26.2 21.9 38.43 30.21 52.4 43.7 78.1 65.1 127 115
70 21 25 4.30 3.60 8.00 6.80 16.2 13.5 22.28 18.56 31.5 26.3 46.20 38.57 62.4 52.0 92.5 77.1    
80 19 23 4.80 4.00 9.20 7.70 18.4 15.4 25.30 21.18 35.5 29.6 52.07 43.41 70.8 59.0 105 87.5    
90 17 20 5.20 4.40 10.3 8.60 20.7 17.3 28.46 23.79 39.3 32.8 57.64 48.10 77.1 64.3 113 94.3    
100 15 18 5.80 4.90 11.5 9.60 23.0 19.2 31.63 26.40 43.2 36.0 63.36 52.8 83.7 69.8 126 105    
120 12 15 6.90 5.80 13.8 11.5 27.7 23.1 38.09 31.76 51.8 43.2 75.97 63.36 101 83.7        
140 11 13 8.00 6.70 16.0 13.4 32.0 26.7 44.0 36.71 59.7 49.8 87.56 73.04 116 96.8        
160 9 11 9.10 7.60 18.3 15.3 36.3 30.3 49.91 41.66 68.0 56.7 99.73 83.16 132 110        
180 8 10 10.3 8.60 20.7 17.3 40.8 34.0 56.10 46.78 76.8 64.0 112.6 93.87 148 123        
200 7 9 11.6 9.70 22.9 19.1 43.2 36.0 59.40 49.5 82.8 69.0                

Note:

We only show several motor models, if these models are not what you want, please freely tell us about your requirement. We will provide you with a suitable motor solution and price soon.

FAQ

1 Q: What’s your MOQ?
   A: 1unit is ok for different types. 

2 Q: What about your warranty?
   A: One year.

3 Q: Do you provide OEM service with customer-logo?
   A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms ?
   A: TT, western union and paypal. 100% payment in advanced for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing ?
   A: Carton, Plywood case. If you need more, we can pack all goods with pallet 

6 Q: What information should be given, if I buy from you ?
   A: Rated power, gearbox ratio, input speed, mounting position. More details, better!

7 Q: How do you deliver the order?
   A: We will compare and choose the most suitable ways of delivery by sea, air or express courier.

Warmly welcome your inquiries !

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China OEM 0.55kw 0.75kw 3-Phase Small AC Gear Motor with Brake   vacuum pump distributorsChina OEM 0.55kw 0.75kw 3-Phase Small AC Gear Motor with Brake   vacuum pump distributors
editor by CX 2024-04-19

China Custom ZD Electric Brake / Fan Connection Box Right Angle Hollow Shaft Helical Hypoid AC Induction Gear Motor vacuum pump for ac

Product Description

Model Selection

       ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor,  Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. 

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters

Hypoid Gear Motor

MOTOR TYPE ZDF3
OUTPUT POWER 100W / 200W / 400W / 750W / 1500W / 2200W (Can Be Customized)
OUTPUT SHAFT  Hollow Shaft / CHINAMFG Shaft
Voltage type 3 phase 220V(50/60HZ), 3 phase 380V(50/60HZ)
Phase Three-Phase
Insulation  Grade F stage
Accessories Electric Brake / Fan / Connection Box
Gear Ratio 5K-240K

Detailed Images

Other Products

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Custom ZD Electric Brake / Fan Connection Box Right Angle Hollow Shaft Helical Hypoid AC Induction Gear Motor   vacuum pump for ac	China Custom ZD Electric Brake / Fan Connection Box Right Angle Hollow Shaft Helical Hypoid AC Induction Gear Motor   vacuum pump for ac
editor by CX 2024-04-15

China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole vacuum pump for ac

Product Description

HMEJ(AC) series Self-Braking Electric Motor
HMEJ series AC brake motor is three-phase asynchronous motor which is totally enclosed squirrel cage with additional AC brake of disk type. It has advantage of fast brake, simple structure, high reliability and good versatility. In additional, the brake has manual work releasing structure which is widely used in mechanical equipment and transmissions devices for various requirements of rapid stop and accurate positioning.
 

TYPE POWER 380V  50Hz  Full Loaded             Weight Housing Material
     
(kw) Speed
(r/min)
Current(A) Eff power factor () () () (Nm) <(s) <(w) (kg)
Synchrouns Speed 3000r/min(2P)380V 50Hz
YEJA711-2 0.37 2756 1 70.0 0.81 6.1 2.2 2.2 4 0.20 40 9.3 ALU
YEJA712-2 0.55 2792 1.4 72.0 0.82 6.1 2.2 2.2 4 0.20 40 10.5
YEJA801-2 0.75 2830 1.9 72.1 0.83 6.1 2.2 2.3 7.5 0.20 50 14
YEJA802-2 1.1 2830 2.7 75.0 0.84 7.0 2.2 2.3 7.5 0.20 50 15
YEJA90S-2 1.5 2840 3.5 77.2 0.84 7.0 2.2 2.3 15 0.20 60 20
YEJA90L-2 2.2 2840 4.9 79.7 0.85 7.0 2.2 2.3 15 0.20 60 23
YEJA100L-2 3 2860 6.4 81.5 0.87 7.5 2.2 2.3 30 0.20 80 31
YEJA112M-2 4 2880 8.3 83.1 0.88 7.5 2.2 2.3 40 0.25 100 44
YEJA132S1-2 5.5 2900 11.2 84.7 0.88 7.5 2.2 2.3 75 0.25 130 80
YEJA132S2-2 7.5 2900 15.1 86.0 0.88 7.5 2.2 2.3 75 0.25 130 94
YEJA160M1-2 11 2930 21.4 87.6 0.89 7.5 2.2 2.3 150 0.35 150 150
YEJA160M2-2 15 2930 28.9 88.7 0.89 7.5 2.2 2.3 150 0.35 150 160
YEJA160L-2 18.5 2930 35 89.3 0.90 7.5 2.2 2.3 150 0.35 150 180
Synchrouns Speed1500r/min(4Pole)380V 50Hz
YEJA711-4 0.25 1390 0.8 65.0 0.74 5.2 2.1 2.2 4 0.20 40 9.3 ALU
YEJA712-4 0.37 1390 1.13 67.0 0.74 5.2 2.1 2.2 4 0.20 40 10.5
YEJA801-4 0.55 1390 1.6 71.0 0.74 5.2 2.4 2.3 7.5 0.20 50 14
YEJA802-4 0.75 1390 2.1 73.0 0.75 6.0 2.3 2.3 7.5 0.20 50 15
YEJA90S-4 1.1 1400 2.9 76.2 0.76 6.0 2.3 2.3 15 0.20 60 20
YEJA90L-4 1.5 1400 3.7 78.5 0.78 6.0 2.3 2.3 15 0.20 60 23
YEJA100L1-4 2.2 1420 5.2 81.0 0.80 7.0 2.3 2.3 30 0.20 80 31
YEJA100L2-4 3 1420 6.8 82.3 0.81 7.0 2.3 2.3 30 0.20 80 33
YEJA112M-4 4 1440 8.8 84.2 0.82 7.0 2.3 2.3 40 0.25 100 44
YEJA132S-4 5.5 1440 11.8 85.7 0.83 7.0 2.3 2.3 75 0.25 130 80 CI
YEJA132M-4 7.5 1440 15.8 87.0 0.84 7.0 2.3 2.3 75 0.25 130 94
YEJA160M-4 11 1460 22.5 88.4 0.84 7.0 2.2 2.3 150 0.35 150 150
YEJA160L-4 15 1460 30 89.4 0.85 7.0 2.2 2.3 150 0.35 150 160
                           
Frame Rated  Output 380V  50Hz  Full Loaded             Weight  
     
(kw) Speed
(r/min)
Current Eff% Power Factor () () () (Nm) <(s) <(w) (kg)
1000r/min(6)380V 50Hz
YEJA711-6 0.18 880 0.74 56.0 0.66 4.0 1.9 2.0 4 0.20 40 9.3 ALU
YEJA712-6 0.25 880 0.95 59.0 0.68 4.0 1.9 2.0 4 0.20 40 10.5
YEJA801-6 0.37 900 1.3 62.0 0.70 4.7 1.9 2.0 7.5 0.20 50 14
YEJA802-6 0.55 900 1.8 65.0 0.70 4.7 1.9 2.1 7.5 0.20 50 15
YEJA90S-6 0.75 910 2.3 69.0 0.70 5.5 2.0 2.1 15 0.20 60 20
YEJA90L-6 1.1 910 3.2 72.0 0.72 5.5 2.0 2.1 15 0.20 60 23
YEJA100L-6 1.5 940 4.0 76.0 0.74 5.5 2.0 2.1 30 0.20 80 33
YEJA112M-6 2.2 950 5.7 79.0 0.74 6.5 2.0 2.1 40 0.25 100 44
YEJA132S-6 3 960 7.4 81.0 0.76 6.5 2.1 2.1 75 0.25 130 80 CI
YEJA132M1-6 4 960 9.8 82.0 0.76 6.5 2.1 2.1 75 0.25 130 90
YEJA132M2-6 5.5 960 12.9 84.0 0.77 6.5 2.1 2.1 75 0.25 130 94
YEJA160M-6 7.5 970 17.2 86.0 0.77 6.5 2.0 2.1 150 0.35 150 150
YEJA160L-6 11 970 24.5 87.5 0.78 6.5 2.0 2.1 150 0.35 150 160
750r/min(8)380V 50Hz
YEJA801-8 0.18 690 0.94 51.0 0.57 3.3 1.8 1.9 7.5 0.20 50 14 ALU
YEJA802-8 0.25 690 1.2 54.0 0.58 3.3 1.8 1.9 7.5 0.20 50 15
YEJA90S-8 0.37 690 1.5 62.0 0.60 4.0 1.8 1.9 15 0.20 60 20
YEJA90L-8 0.55 690 2.2 63.0 0.61 4.0 1.8 2.0 15 0.20 60 23
YEJA100L1-8 0.75 700 2.4 71.0 0.67 4.0 1.8 2.0 30 0.20 80 31
YEJA100L2-8 1.1 700 3.3 73.0 0.69 5.0 1.8 2.0 30 0.20 80 33
YEJA112M-8 1.5 700 4.4 75.0 0.69 5.0 1.8 2.0 40 0.25 100 44
YEJA132S-8 2.2 710 6.0 80.5 0.71 6.0 1.8 2.0 75 0.25 130 80 CI
YEJA132M-8 3 710 8.1 82.5 0.71 6.0 1.8 2.0 75 0.25 130 94
YEJA160M1-8 4 720 10.3 84.0 0.73 6.0 1.9 2.0 150 0.35 150 140
YEJA160M2-8 5.5 720 13.6 85.0 0.74 6.0 2.0 2.0 150 0.35 150 150
YEJA160L-8 7.5 720 18.4 86.0 0.74 6.0 2.0 2.0 150 0.35 150 160

    Our factory

                         
Contact us

   /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances
Operating Speed: High Speed
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Type: Y2ej
Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole   vacuum pump for ac	China Custom AC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 22kw/4pole   vacuum pump for ac
editor by CX 2024-04-10