Tag Archives: motor ac gearbox

China high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price vacuum pump brakes

Product Description

Product Description

  Model selection

1.Installation method: Horizontal ( foot) installation, Vertical ( flange) installation

2.Requirement for the output shaft of motor: 18,22,28,32,40,50mm

3.Power requirement: 100W, 200W….3700W

4.Speed of the motor you need

5.Ratio: Motor input speed/output speed. Or advise your required output speed. We have 3,5,10…1800

6.Voltage: Three phase 220V/380V 50/60Hz; Single phase 110, 220V 50/60Hz

7.Additional parts:DC 90V brake unit; Hand release brake unit; DC 24V brake unit, 110V forced draft fan; 220V forced draft fan.

8.Position of terminal box: view from output shaft

9.Wire inlet direction

GH:Horizontal installation gear motor
GV:Vertical installation gear motor
GHM:Horizontal installation straight gear motor
GVM:Vertical installation straight gear motor
GHD :Horizontal installation dual axis gear motor
GVD:Vertical installation dual axis gear motor
 

 

 

Features of AC Gear motor

1.Small size, light weight, knot no noise, compact, maintenance-free 

2.High tightness. Geared motor output section has the configuration of seals and O-ring to avoid grease refluxing and damage of insulation aging .

 3.High efficiency. The gear motor products using the new silicon steel stamping die design, high precision core, strong magnetic properties, geared motor cooling structure using the new shape .

4.Optimal design, the ST ( speed – torque ) features optimized so that gear motors can work for a variety of operating environments.

5.Customized, our company has developed its own design team, geared motors can be customized according to the customer ‘s specific needs specifications.

Application:

Various industrial production lines, coveyor machinery, food machinery, medical machinery, printing machinery, office facility, instrument, automatic mahjong machine
 

Output Shaft

18

22

28

32

40

50

60

Ratio

3~50

3~90

3~200

3~200

3~200

3~200

3~100

Power

100W/200W

100w.

200w.

400w

1/4HP.

1/2HP,

1HP

1/2HP,

1HP,

2HP

1HP,

2HP,

3HP

2.3.5.7.5.10(HP)

7.5HP.

10HP

Output Torque

0.19~19.3

kg-m

0.19~36

kg-m

0.37~69

kg-m

1.3~123

kg-m

1.3~145

kg-m

2.6~267

kg-m

9.8~267

kg-m

Output Speed (RPM)

0.1~1800

0.1~1800

0.1~1800

0.1~1800

0.1~1800

0.1~1800

 

0.1~1800

 

Detailed Photos

Our Advantages

We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price 
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,

FAQ

Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Helical
Gear Shape: Helical
Step: Three-Step
Samples:
US$ 96/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price   vacuum pump brakesChina high quality CH/CV Gearbox Motor with Brake 1-Phase Speed Reducer AC Gear Motor Price   vacuum pump brakes
editor by CX 2024-05-17

China factory Medium Motor with Shaft Mounting Flange Gearbox High Torque AC Reduction Gear Speed Reducer vacuum pump adapter

Product Description

3 Phase AC Reducer Motor 1/2hp 220V 380V 400W Gear Precision Foot Mounted Reducer Motor

CV and CH series motor can be designed as Single phase and 3 phases type. And power range is from 0.1KW to 3.7KW. The motor can be mounted with brake, and brake type is No excitation type. Material of gears is advanced special alloy steel and all gears are carburizing hardening. This gear motor has been added with senior lubricants, and no needs to added lubricants again.

Helical gear reducer has the characteristics of strong versatility, good combination, and strong bearing capacity, and has the advantages of easy access to various transmission ratios, high efficiency, small vibration, and high allowable axial and radial loads.

This series of products can not only be used in combination with various reducers and vibrators to meet the requirements, but also has the advantage of localization of related transmission equipment.
 

Mostly used in metallurgy, sewage treatment,chemical, pharmaceutical and other industries.

 

Type CH series  three phase or single phase ac motors for industrial use 
Voltage 220VAC, 380VAC, 415VAC
Power range Power range is 0.1KW to 3.7KW
Output Speed Speed range is from 7rpm to 500rpm
Phase Single phase and 3phases for choice
Gears Special alloy steel and high precise gears
Grease Good grease and no need add grease during using
Cooling Full closed fan
USE This motor is widely used in
packing machine, textil machine
motor is widely used in mix 
machine,elevator, conveyor,etc.
OEM Service We offer OEM service.

  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China factory Medium Motor with Shaft Mounting Flange Gearbox High Torque AC Reduction Gear Speed Reducer   vacuum pump adapter	China factory Medium Motor with Shaft Mounting Flange Gearbox High Torque AC Reduction Gear Speed Reducer   vacuum pump adapter
editor by CX 2024-04-24

China wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale vacuum pump distributors

Product Description

3 phase ac asynchronous marine gearbox electric motor price for wholesale

Application of electric motor

Electric motors are used in a wide variety of applications, including:

  • Home appliances: Electric motors are used in home appliances such as refrigerators, washing machines, and vacuum cleaners.
  • Power tools: Electric motors are used in power tools such as drills, saws, and sanders.
  • Machine tools: Electric motors are used in machine tools such as lathes, milling machines, and grinders.
  • Transportation: Electric motors are used in transportation vehicles such as cars, buses, and trains.
  • Industry: Electric motors are used in industry for a variety of applications such as conveyor belts, hoists, and elevators.
  • Medical devices: Electric motors are used in medical devices such as X-ray machines, MRI machines, and pacemakers.
  • Other: Electric motors are also used in a variety of other applications such as wind turbines, robotics, and telecommunications.

Here are some specific applications of electric motors:

  • Wind turbines: Electric motors are used in wind turbines to convert the kinetic energy of the wind into electrical energy.
  • Robotics: Electric motors are used in robotics to provide motion and control.
  • Electric vehicles: Electric motors are used in electric vehicles to power the wheels.
  • Machine tools: Electric motors are used in machine tools to power the cutting tools.
  • Conveyor belts: Electric motors are used in conveyor belts to move materials from 1 place to another.
  • Elevators: Electric motors are used in elevators to raise and lower people and objects.
  • Air conditioners: Electric motors are used in air conditioners to move the refrigerant through the system.
  • Refrigerators: Electric motors are used in refrigerators to move the refrigerant through the system and to power the compressor.
  • Vacuum cleaners: Electric motors are used in vacuum cleaners to power the brush roll and the fan.
  • Drills: Electric motors are used in drills to spin the drill bit.
  • Saws: Electric motors are used in saws to spin the saw blade.
  • Sanders: Electric motors are used in sanders to spin the sanding disk.
  • Other: Electric motors are used in a variety of other applications, such as toys, appliances, and medical devices.

Electric motors are a versatile and reliable component that can be used in a wide variety of applications. They offer a number of advantages, including:

  • Efficiency: Electric motors are very efficient, converting up to 90% of the electrical energy they receive into mechanical energy.
  • Versatility: Electric motors can be used in a wide variety of applications.
  • Reliable: Electric motors are very reliable and have a long lifespan.
  • Cost-effective: Electric motors are a cost-effective way to power a variety of devices.

Overall, electric motors are a valuable component that can be used in a wide variety of applications. They offer a number of advantages, including efficiency, versatility, reliability, and cost-effectiveness.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode:
Function: Control, Driving
Casing Protection:
Number of Poles: 2
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale   vacuum pump distributorsChina wholesaler Three Phase AC Asynchronous Marine Gearbox Electric Motor Price for Wholesale   vacuum pump distributors
editor by CX 2024-04-23

China Best Sales R/F/K/S Series Helical Gear Gearbox AC Gear Motor Price 7.5kw 220 Voltage R Series Helical Reducer Speed Gear Motor vacuum pump oil

Product Description

Detailed Photos



 

Product Parameters

Products Description

R Series Helical Speed Reducers

R series helical gear reducer has high technological content; it adopts hardened gear surface design, which is reliable and durable and has high overload capacity.
 

It has the following characteristics
1,R series helical gear reducer is manufactured in accordance with international technical requirements, meeting the technical
requirements of most countries in the world.
2,The design of R series helical gear reducer plays a space-saving, high overload capacity.
3, R series helical gear reducer has low energy consumption, superior performance and high efficiency of more than 95%;
4,R series helical gear reducer has low vibration, low noise, and high energy saving;
5,R series helical gear reducer is made of high quality forged steel material, steel cast iron case, and the surface of gear is heat-treated by high frequency; reliable and durableTranslated with DeepL


R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,1. Features: small offset output, compact structure, maximum use of box space, use of integral casting box, good stiffness, can improve the strength of the shaft and bearing life.

2. Installation type and output mode: bottom seated type and large and small flange type installation, CHINAMFG shaft output.

3. Input mode: direct motor, shaft input and connecting flange input.

4. Reduction ratio: secondary 5~24.8, tertiary 27.2~264, R/R combination up to 18125.

5. Average efficiency: Class II 96%, Class III 94%, R/R combination 85%.

6. The R series specially designed for mixing can bear large axial and radial forces.

Technical parameters:

Coaxial coaxial output

R reducer

Power: 0.12KW~160KW

Torque: 1.4N · m ~ 23200N · m

Output speed: 0.06 ~ 1090r/min

Model example:

R17-Y4-4P-32.40-M1-0°

R: Series code

F: Shaft extension flange installation

17: Machine model

Y: Three phase AC asynchronous motor

4: Motor power

4P: motor stage

32.40: Transmission ratio

M1: Installation type

0 °: junction box position (0 ° – 270 °)

R series helical gear hardened gear reducer

Basic model of R series reducer:

R17R27R37R47R57R67R77R87R97R107R137R147R167

RF17RF27RF37RF47RF57RF67RF77RF87RF97RF107RF137RF147RF167

RX37RX57RX67RX77RX87RX97RX107RX127RX157

RXF37RXF57RXF67RXF77RXF87RXF97RXF107RXF127RXF157

R series helical gear reducer with hard tooth surface features small size, light weight, high bearing capacity, high efficiency, long service life, convenient installation, wide motor power range, fine transmission ratio classification, etc. It can be widely used in equipment that needs to be decelerated in various industries.

sewage treatment, chemical industry, pharmacy and other industries.


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 1780/Piece
1 Piece(Min.Order)

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China Best Sales R/F/K/S Series Helical Gear Gearbox AC Gear Motor Price 7.5kw 220 Voltage R Series Helical Reducer Speed Gear Motor   vacuum pump oil	China Best Sales R/F/K/S Series Helical Gear Gearbox AC Gear Motor Price 7.5kw 220 Voltage R Series Helical Reducer Speed Gear Motor   vacuum pump oil
editor by CX 2024-04-12

China Good quality AC Hypoid Geared Motor Right Angle Gearbox 220V 380V 1500W 1.5kw 2 HP AC Gear Motor for Sewing Machine with high quality

Product Description

AC Hypoid Geared Motor Right Angle Gearbox 220v 380v 1500w 1.5kw 2 hp AC Gear Motor For Sewing Machine

Products Description
 

The following are the specifications that our company’s Right angle AC hypoid gear motors 1500W can achieved. You can also contact us to tell us the power, voltage, torque and other parameters you need. We can accept and customize. and You can also contact us for drawings and detailed parameters.
Band name Lunyee
Output Power 1500W
Voltage 220v 380v
Frequency 50Hz 60Hz
Phase 3-phase
Gear box hypoid gear
Ratio 5-60
Output shaft type hollow shaft      CHINAMFG shaft
Output shaft axial L axis(left)       R(right) axis
Allowable torque 17.49 N.m – 554 N.m
Insulation grade F
Poles 2
Rated Continued (except with brake)
Deceleration mode  Straight shaft: hyperbolic gear,   helical gear
Installation direction Horizontal, verical, inclined and so on, no restrictions on the installtion angle

Hypoid geared motor Related parameters

product drawings

Product Features:

High efficiency

High torque Low speed

Low noise Long life Strong reliability
Running smoothly
Brushless environmental protection
Simple structure easy to use
Factory supplier best price
Suitable for extreme environments
Wide range of applications

product details
1.AC Gear Motor

Compact structure, good sealing performance, low noise, long life,low operating temperature Adjustable speed, reversible, CHINAMFG and reverse

 

2.All Copper Coil

 

All copper coil, fast heat dissipation, life is 10 times that of ordinary coil

3.High precision hard tooth surface

 

The gear has high precision, high hardness, anti-rust treatment, waterproof and quiet, long life

Application

AC gear motor widely used in Industrial equipment, machine tools, agricultural appliances, commercial office, medical equipment, household appliances, aviation and other fields. Such as treadmill, sewing machine, meat grinder , tortilla press maker, Apparel Machine, Textile Machine, Metal Coating Machinery, Pumps, Sprayers, heavy mine equipment, Packing Machine, nebulizer, table fan, Face Mask Machine, Rehabilitation Therapy Supplies, refrigerator, Air Purifiers, Fermenting Equipment. and many more.

Company Certifaction

About us:

ZheJiang CHINAMFG Industries Co., Limited. company, is the recognized top manufacturer of industrial humidification system inChina. Our factory has 3 large workshops, covering 3,000 square meter area. We have more than 100 employees, equip with professional R&D team, reliable workers and efficient sales service team. Green focus on research and development, manufacture, and sale of humidifying, air cooling, dedusting, dehumidifying and energy saving equipment. Our company is evolving as the change of customers’ needs, we are committed to developing and engineering new technology to best suit our customers’ demands. So far, we have got many patents on highly advanced and efficient humidifier designs.Working with Green, you will enjoy the latest and most advanced technology and kindest service.
 

Our Mine Product:

DC/AC motor, stepper motor, gearbox, CNC engraving machine, industrial humidifier.

Our Services:
Each of our products will undergo rigorous testing before leaving the factory. We will provide you with professional designs and solutions, high-quality products and high-quality services according to your needs. If you have any questions, please feel free to
contact us. We will serve you immediately.
Packing &Shipping
Inside : Plastic bags with Chemical Desiccant For Gear Housing
Middle : Individual Carton packaging Outside : Wooden Box
Shipment: TNT, DHL, UPS, FedEx,EMS etc.Or use the shipment your specified.
Strict product packaging ensures that the product is not damaged during transportation.

FAQ

Q1 Are you a manufacturer or a trading company?
We are a motor in China.
Q2 What’s your warranty?
One-year.
Q3 Can you give more discounts if more quantity and how many?
We can afford discounts and rate based on updated quantity.
Q4 Can you make OEM/ODM order?
Yes, we have rich experience on OEM/ODM order.
Q5 Delivery
Sample can be afforded within 5-7days and volume order can be finished within 15-20days.
Q6 About sample?
Available.
Q7 Which of payments you support?
T/T, L/C,PAYPAL, CREDIT CARD.
Q8 Which of transportations you support?
Sea, Air cargo, Train, DHL/FEDEX/UPS/TNT.
Q9 What you can do if we still have worry on your product?
We can afford sample for testing, if approval then negotiate cooperation later.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Good quality AC Hypoid Geared Motor Right Angle Gearbox 220V 380V 1500W 1.5kw 2 HP AC Gear Motor for Sewing Machine   with high quality China Good quality AC Hypoid Geared Motor Right Angle Gearbox 220V 380V 1500W 1.5kw 2 HP AC Gear Motor for Sewing Machine   with high quality
editor by CX 2024-03-29

China best NEMA 17 Planetary Gearbox Stepper Motor with High Precison Low Backlash to 15′ ac motor

Product Description

 

Product Description

High Precision Planetary Gear Stepper Motor

The high precision planetary gear stepper motor is high precision and low noise with precision steel teeth,can withstand greater axial force and radial force. Higher concentricity, more stable transmission. These motors are available in standard:
Nema 17(42*34, 42*40)
Reduction ratio:1:5 , 1:7 , 1:10 , 1:16 ,1:20 ,1:25 , 1:35 ,1:40, 1:50,1:70;1:100. 
Nema 23(57*55)
Reduction ratio:1:5 , 1:7 , 1:10 , 1:16 ,1:20 ,1:25 , 1:35 ,1:40
Nema 24(60*55)
Reduction ratio:1:5 , 1:7 , 1:10 , 1:16 ,1:20 ,1:25 , 1:35 ,1:40
And 48 hours delivery, in stock .

Application:
Automation control, medical equipment, textile machinery, and packaging machinery fields. Not only in the field of the automation industry, it also has a good use status in the home.   Products with low speed and inertia are often seen: electric  curtains, electric shutters, etc
 

Product Parameters

Planetary Gear Box Specification:

General Specification:
Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 260N
Max.Shaft Axial Load 80N
Backlash at No-load 1 stage≤15′,2 stage≤20′

 

42HS Hybrid Stepping Motor Specifications:
Model No. Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft (L)mm V A Ω mH mN.m No. g.cm2 Kg  
42HSC1409 34 2.93 1.3 2.2 3.5 270 4 30 0.22 ≤1:100
42HSC4409 40 2.5 1.5 1.65 3.3 380 4 40 0.3 ≤1:100

42HSC1409 Planetary Gearbox Specifications:
Reduction ratio 3 4 5 7 10 12 15 16 20 25 28 35 40 50 70 100
Total Height(L1+L2) (mm) 74 74 74 74 74 85 85 85 85 85 85 85 85 85 85 85
Output torque ( mN.m) 777 1036 1296 1814 2592 3045 3807 4060 5076 6345 7106 8883 10000 10000 10000 10000
Total Weight(g) 470 470 470 470 470 570 570 570 570 570 570 570 570 570 570 570
Number of gear trains 1 2
Reducer Length(L2)   (mm) 40 51
Efficiency 96% 94%

 

Detailed Photos

 

Company Profile

ZheJiang UMot Technology Co., Ltd. specializes in R&D and sales of stepper motors, servo motors, linear modules and related motion control products, customizing and designing high-quality motor products for users with special needs around the world, and providing overall solutions for motion control systems. Products are exported to more than 30 countries and regions including the United States, Germany, France, Italy, Russia, and Switzerland. The company’s main products and system design have been widely used in automation control, precision instruments, medical equipment, smart home, 3D printing and many other fields.
Our company has been recognized as a high-tech enterprise by relevant departments, has a complete quality management system, has obtained ISO9001, CE, RoHs and other related certifications, and holds a number of electrical patent certificates. “Concentration, Professionalism, Concentration” in the field of automation of motor R&D and system control solutions is the company’s business purpose. “Be your most trusted partner” is the company’s service philosophy. We have always been aiming to “make first-class products with professional technology”, keep pace with the times, innovate constantly, and provide more users with better products and services.

FAQ

1. Shipping method:
1)International Express delivery DHL&FEDEX &UPS&TNT& 7-10days
2)Shipping by air 7-10 days
3)shipping by sea, delivery time depends on the destination port.

2. Technical Support:
We can provide you with professional technical support. And our products quality guarantee is 6 months. Also, we accept products customized.

3. Why should you buy from us, not from other suppliers?
Professional one-to-1 motor customized. The world’s large enterprise of choice for high-quality suppliers. ISO9001:2008 quality management system certification, through the CE, ROHS certification.

4. How to select models?
Before purchasing, please contact us to confirm model No. and specifications to avoid any misunderstanding.

5. Are you a factory?
Yes, we are a factory, and we produce stepper motor/driver, Servo motor/driver.

 

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2
Samples:
US$ 42/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Motor

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China best NEMA 17 Planetary Gearbox Stepper Motor with High Precison Low Backlash to 15′   ac motor	China best NEMA 17 Planetary Gearbox Stepper Motor with High Precison Low Backlash to 15′   ac motor
editor by CX